OVERHILLS STREAM AND WETLAND RESTORATION MONITORING REPORT (YEAR 2 OF 5)

Harnett County, North Carolina NCEEP Project Number 199

Prepared for: North Carolina Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

Status of Plan: Final Submission Date: April 2009

Monitoring Firm:

Stantec Consulting Services Inc 801 Jones Franklin Road, Suite 300 Raleigh, NC 27606

EXECUTIVE SUMMARY

Project Background

The North Carolina Ecosystem Enhancement Program (NCEEP) restored 4,482 linear feet of Jumping Run Creek and 70 acres of adjacent riverine wetlands located on the Fort Bragg Overhills tract, north of Spring Lake, in Harnett County, North Carolina. Construction of the project began on July 12, 2004 and the restoration was completed on May 30, 2006. The following report provides the monitoring information for year two (2) of the stream and wetland restoration project. The project consists of a portion of Jumping Run Creek and the adjacent riverine wetland. The site is located on the Fort Bragg Military Reservation in Harnett County, North Carolina and can be accessed from Nursery Road between NC 87 and Overhills Road. Project goals and objectives for the Overhills stream restoration project included restoration of stream dimension, pattern, and profile; restoration of riverine wetland hydrology and vegetation; improvement of water quality; and protection of future water quality. Jumping Run Creek had been significantly altered from its natural path prior to the restoration efforts. The channel has been relocated to the far edge of its floodplain. The purpose of this type of relocation was typically to improve drainage of the surrounding area and create a large field for agricultural purposes. The adjacent riverine wetlands were also significantly altered due to the stream relocation. In addition, a ditch was created on the eastern edge of the property. Undeveloped forested land is located to the east and west of the project site. An agricultural field is located to the north and Nursery Road serves as the southern boundary. The Jumping Run Creek watershed is comprised of a mixture of undeveloped forested land, wetlands, suburban residential areas, commercial areas, and a large golf course community. The watershed has a drainage area of 15.9 square miles. The topography of the watershed is typical sandhills type topography which is rolling in nature.

Vegetation Assessment

The Carolina Vegetation Survey (CVS) Level 2 methodology was utilized to sample vegetation in October of 2008. Ten 100m² plots have been established throughout the project. In each plot, two plot corners have been permanently located with conduit or rebar. As per the mitigation plan, the vegetative success criteria are based on the US Army Corps of Engineers Stream Mitigation Guidelines (USACE, 2003). The final vegetative success criteria will be the survival of 260 5-year old planted trees per acre at the end of the year 5 monitoring period. An interim measure of vegetation planting success will be the survival of at least 320 3-year old planted trees per acre at the end of year 3 of the monitoring period. Seven of the plots have over 320 stems per acre while three of the plots have less than 320 stems per acre. This is an increase in the number of plots meeting the 3-year vegetative success criteria when compared to last year. Plot 9 did not meet the criteria in Year 1, with 283 stems per acre. In addition to the three failing vegetation plot sites, several vegetation problem areas (VPA) exist onsite. In VPA 1 and 2, persistent flooding has occurred and has caused the majority of the planted vegetation to die. Standing water continues to be present in VPA 1. VPA 3 is currently overrun with invasive species, primarily Lespedeza. Lespedeza continues to be a major problem on the project site. It is invading dry areas, especially on top of the berms onsite.

Stream Assessment

As per the request of NCEEP, the Overhills Stream Restoration project was monitored as two separate reaches in Monitoring Year 2. The Upper Reach, classified as a Rosgen C5 stream, runs from the

beginning of the project at Station 0+00 to Station 33+00. The Lower Reach, a Rosgen E5 stream, runs from 33+00 to the end of the project at Station 44+00. A new riffle cross-section, Cross Section 9, was added in order to provide sufficient cross-sectional data for the Lower Reach. Other cross-sectional changes this year include the re-designation of Cross Section 7 as a riffle. This cross-section had been designed as a riffle, but had been referred to as a pool cross-section in the previous year's monitoring report as it exhibited some pool-like characteristics.

A major stream problem area is located from station 32+60 to 44+00 where the stream has experienced serious failure. At the downstream end of the Upper Reach, a headcut was first noted to have developed near Station 32+80 in Year 1 monitoring. This headcut continues to move steadily upstream, appearing to have moved approximately 20 feet upstream to Station 32+60 since last year. The headcut most likely first began at the location where the design changes from a C5 to E5 channel between the Upper and Lower reaches at Station 33+00. Downstream from this headcut, most of the in-stream structures have failed and erosion is occurring. Mid-channel bar formation is also occurring along the reach. There was also a lack of geotextile fabric in the installation and the angle of the structure was not optimal to reduce near bank sheer stress and bank scour. The beaver dam near Station 6+30 continues to cause problems such as scour and excessive sediment deposition. Minor scouring and sediment deposition was also observed around the two smaller beaver dams present at the time of the stream monitoring survey on August 12, 2008. The beaver dams were located at Stations 23+15 and 27+77. These are both shown on the longitudinal profiles and monitoring plan view; however, they were not present during the latest site visit in November of 2008. Significant storm events during the early fall most likely washed the dams downstream. Minor problem areas such as bank scour and floodplains with little to no vegetation were found from Station 0+00 to Station 32+00 of the restoration reach, but overall this area of the restoration appears to be stable.

Wetland Assessment

Fifteen groundwater monitoring wells are currently active on the project site. All 15 wells met the success criteria during the growing season of 2008. The reference well also met the success criteria, with a maximum of 71 consecutive days of saturation within 12 inches of the ground surface. Precipitation this year fell between the 30th and 70th percentiles for all months during the growing season except March, June and October, which fell just below the 30th percentile. April and September precipitation fell above the 70th percentile.

Table of Contents

Execu	tive Summary	i
1.0	Project Background	1
1.1	Project Objectives	
1.2	Project Structure	
1.3	Location and Setting	
1.4	Project History and Background	
1.5		
2.0	Project Condition and Monitoring Results	
2.1	Vegetation Assessment	
2	2.1.1 Vegetation Problem Areas	
2	2.1.2 Vegetation Current Condition Plan View	
2.2		
2	2.2.1 Hydrology	18
2	2.2.3 Stream Problem Areas	
2	2.2.4 Stream Current Condition Plan View	
2	2.2.5 Stability Assessment	19
2	2.2.6 Quantitative Measures Summary	
2.3	•	
2	2.3.1 Wetland Criteria Attainment	
2	2.3.2 Current Condition Plan View	24
3.0	References	25
Figur Figure	e 1 – Location Map	3
Table	s	
Exhib	it Table I – Project Restoration Components	2
Exhib	it Table II – Project History and Reporting Activity	5
Exhib	it Table III – Contacts	6
Exhib	it Table IV – Project Background Table	7
Exhib	it Table V – Verification of Bankfull Events	18
Exhib	it Table VI-A – Categorical Stream Feature Visual Stability Assessment	19
Exhib	it Table VI-B – Categorical Stream Feature Visual Stability Assessment	19
Exhib	it Table VII – Baseline Morphology and Hydraulics Summary	20
	it Table VIII-A – Morphology and Hydraulic Monitoring Summary	21
	it Table VIII-B – Morphology and Hydraulic Monitoring Summary	22
Exhib	it Table IX – Wetland Criteria Attainment	23
Appe	ndices	
Apper	ndix A. Vegetation Raw Data	
Apper	ndix B. Geomorphologic Raw Data	
	ndix C. Wetland Data	
Apper	ndix D. Integrated Current Condition Plan View	

1.0 Project Background

The project consists of a portion of Jumping Run Creek and the adjacent riverine wetland. The site is located on the Fort Bragg Military Reservation in Harnett County, North Carolina.

1.1 PROJECT OBJECTIVES

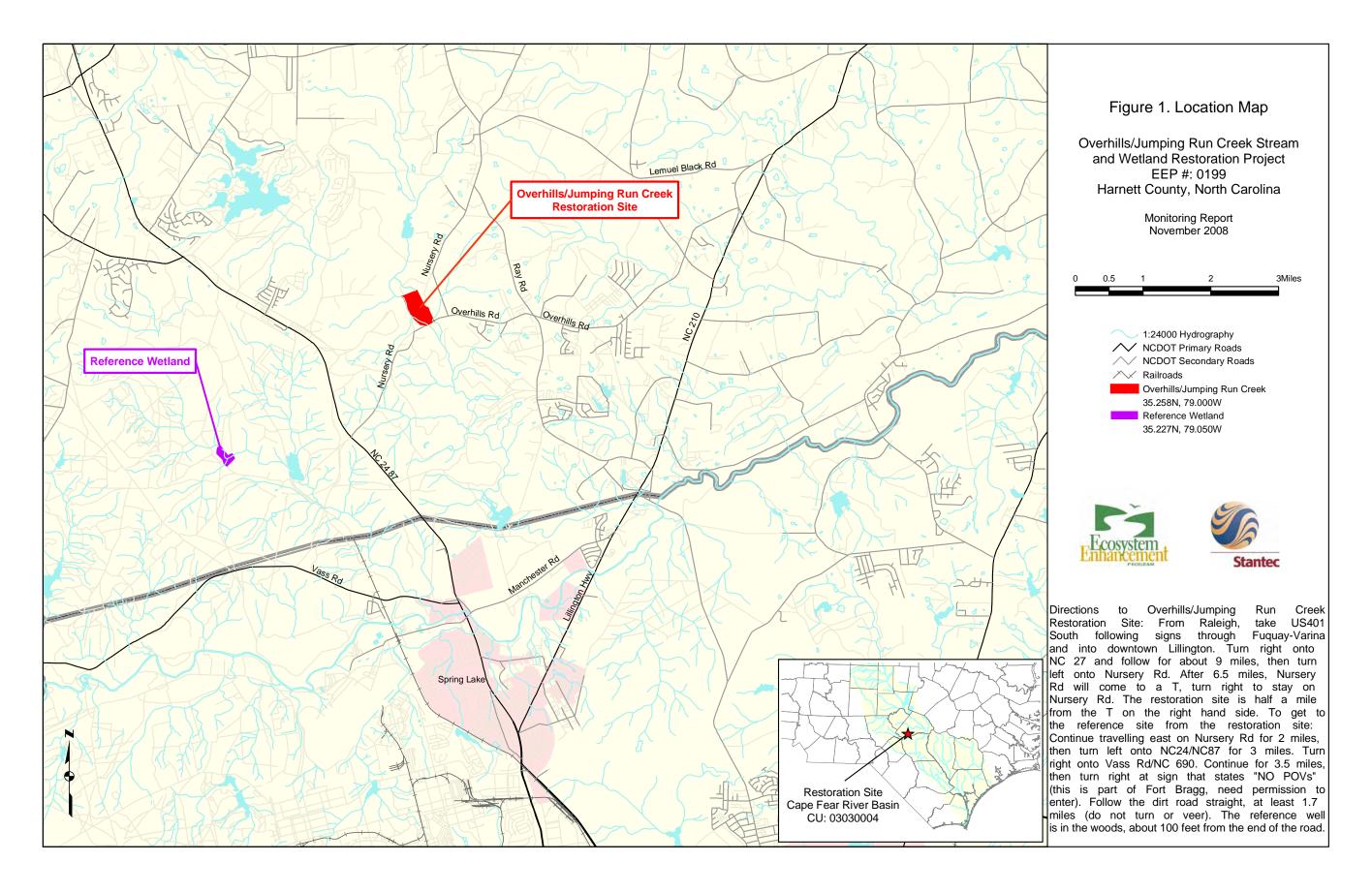
Project goals and objectives for the Overhills stream and wetland restoration project included:

- restore stream dimension, pattern and profile
- restore riverine wetland hydrology and vegetation
- improve water quality
- protect future water quality

1.2 PROJECT STRUCTURE

The project consists of a portion of Jumping Run Creek and the adjacent riverine wetland. The site is located on the Fort Bragg Military Reservation in Harnett County, North Carolina.

Jumping Run Creek has been significantly altered from its natural path prior to the restoration efforts. The channel was relocated to the far edge of its floodplain. The purpose of this type of relocation was typically to improve drainage of the surrounding area and create a large field for agricultural purposes. The existing channel was dug approximately 5-8 feet deep and about 15 feet wide at the stream bed to 20+ feet wide at the top of bank. The stream classification system for the existing reach of this project was a G4/G5c. The adjacent riverine wetlands had also been significantly altered due to the stream relocation as well as a ditch that was created on the eastern edge of the property.


Priority 1 stream restoration was carried out on the entire reach resulting in restored C & E type channels. Type C design was implemented from the start of the project (Station 0+00) until Station 33+00. Type E design was used as a step-down to the receiving stream from this point until the project end. For the remainder of this report, the C channel will be referred to as the Upper Reach and the E channel will be referred to as the Lower Reach. The pattern, dimension, and profile were restored throughout the project site by relocating the entire reach of stream. Log structures and root wads were installed to provide grade control, extra bank protection, and encourage development of bedform features. In wetland restoration areas, a mixture of grading to create microtopography, channel plugs, and berms were used to manipulate and enhance the hydrology of the site. Two vegetative zones were planted in the project area. Cypress gum swamp was planted throughout the riverine wetland and more bottomland hardwood species were planted along the stream corridor.

	Exhi	bit Tabl	e I. Pr	oject Res	toration Compone	nts									
Overhills	Overhills/Jumping Run Creek Restoration Project - EEP Project No. 199														
	Existing Feet/Acres	Type	Approach	Footage or Acreage	Stationing	Comment									
Upper Reach		R	P1	3270	0+00 to 33+00	Includes log structures and root wads									
Lower Reach	3064	R	P1	1212	33+00 to 44+00	Includes log structures and root wads; step- down to existing channel									
Riparian Wetlands	NA	R	-	70.0		Floodplain of restored stream									
R = Restoration P1 = Priority 1															

1.3 LOCATION AND SETTING

The restoration site is located on the Fort Bragg Military Reservation in Harnett County, North Carolina and can be accessed from Nursery Road between NC 87 and Overhills Road (Figure 1).

Undeveloped forested land is located to the east and west of the project site. An agricultural field is located to the north and Nursery Road serves as the southern boundary. The Jumping Run Creek watershed is comprised of a mixture of undeveloped forested land, wetlands, suburban residential areas, commercial areas, and a large golf course community. The watershed has a drainage area of 15.9 square miles. The topography of the watershed is typical sandhills type topography which is rolling in nature.

Overhills/Jumping Run Creek Restoration Project – EEP No. 199 Stantec – Monitoring Year 2 of 5 – Final

1.4 PROJECT HISTORY AND BACKGROUND

Exhibit Table II. Project Activity and Reporting History													
Overhills/Jumping Run Creek Restoration Project - EEP Project No. 199													
	Data	Actual											
	Collection	Completion or											
Activity or Report	Complete	Delivery											
Restoration Plan	NA	March 2003											
Final Design - 90%	NA	Dec 2003											
Construction	NA	June 2006											
Temporary S&E mix applied to entire project area	NA	2004											
Permanent seed mix applied to entire project area	NA	Nov 2004											
Bare root, containers, and live stakes for majority of site	NA	Dec 2004											
Water released into new channel	NA	Oct 2005											
Permanent seed mix applied to entire project area	NA	Nov 2005											
Bare root, containers, and live stakes for remainder of site	NA	Dec 2005											
Mitigation Plan / As-built (Year 0 Monitoring - baseline)	July 2007	Nov 2007											
Year 1 Monitoring	Nov 2007	Nov 2007											
Year 2 Monitoring	Nov 2008	Nov 2008											
Year 3 Monitoring	NA	NA											
Year 4 Monitoring	NA	NA											
Year 5 Monitoring	NA	NA											

NA = Not Applicable

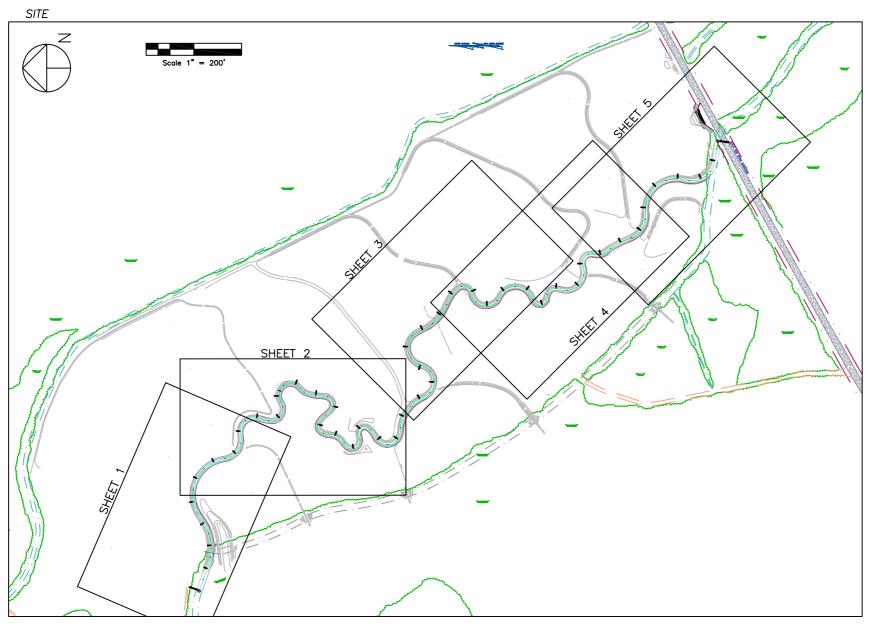
Exhibit Table	III. Contacts
Overhills/Jumping Run Creek Resto	ration Project - EEP Project No. 199
Designer	BLUE: Land Water Infrastructure 1271 Old US Highway #1 South Southern Pines, NC 28387 Phone: 910-692-6461
Construction Contractor	Vaughn Contracting, Inc P.O. Box 796 Wadesboro, NC 28170 Phone: 704-694-6450
Surveying Subcontractor	Barbara H. Mulkey Engineers, Inc 7516 E. Independence Blvd, Suite 100 Charlotte, NC 28227 Phone: 704-537-7300
Site Preparation Subcontractor	Herndon, Inc P.O. Box 36 Lugoff, SC 29078 Phone: 803-513-8002
Erosion Control Subcontractor	Carolina Environmental Contractors, Inc P.O. Box 1905 Monut Airy, NC 27030 Phone: 336-320-3849
Vegetation Planting Contractor & Nursery Stock Supplier for livestakes and potted plants	North State Environmental, Inc 2889 Lowery Street Winston-Salem, NC 27101 Phone: 339-725-2010
Nursery Stock Supplier for bare roots	International Paper
Seed Mix Sources	Unknown/Info Not Available
Monitoring Performers	Stantec Consulting Services, Inc 801 Jones Franklin Rd, Ste 300 Raleigh, NC 27606
Stream Monitoring POC Vegetation Monitoring POC Wetland Monitoring POC	David Bidelspach 919-851-6866 Amber Coleman 919-851-6866 Amber Coleman 919-851-6866

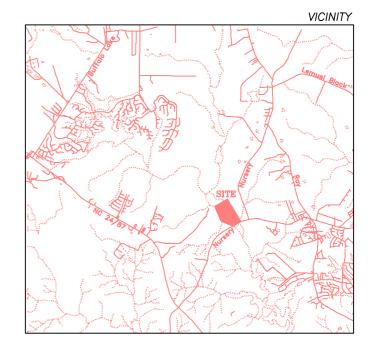
Exhibit Table IV. Project E	Sackground Table
Overhills/Jumping Run Creek Restoratio	
O TOTAL OTTO A TOT	1110,000 221 110,000 1100 1222
Project County	Harnett County
Drainage Area	15.9 square miles
Drainage impervious cover estimate (%)	5%
Stream Order	3rd
Physiographic Region	Sandhills
Ecoregion	Sandhills
Rosgen Classification of As-built	C5
Cowardin Classification	Palustrine
Dominant soil types	
Upper Reach	Roanoke
Lower Reach	Roanoke
Wetland	Roanoke
Reference site ID	Gum Swamp
USGS HUC for Project	03030004
USGS 14-Digit HUC for Project	03030004090010
USGS HUC for Reference	03030004
USGS 14-Digit HUC for Reference	03030004080090
NCDWQ Subbasin for Project	03-16-14
NCDWQ Subbasin for Reference	03-16-13
NCDWQ Classification for Project	С
NCDWQ Classification for Reference	С
Any portion of any project segment 303d listed?	No
Any portion of any project segment upstream of a 303d listed	
segment?	No

1.5 MONITORING PLAN VIEW

See Monitoring Plan View Sheets on the following pages.

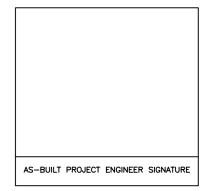
This page intentionally blank

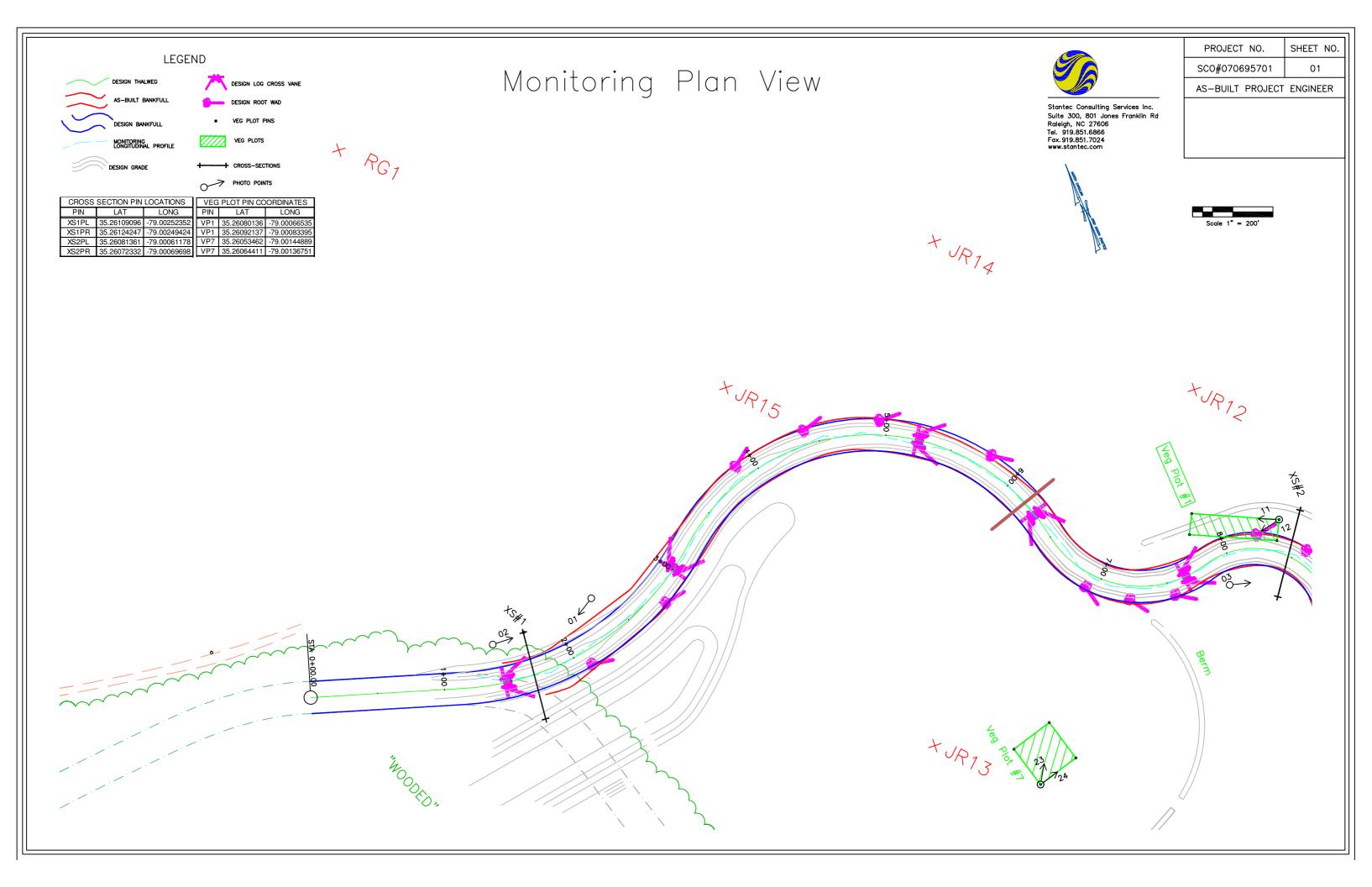

Overhills Monitoring Plan View

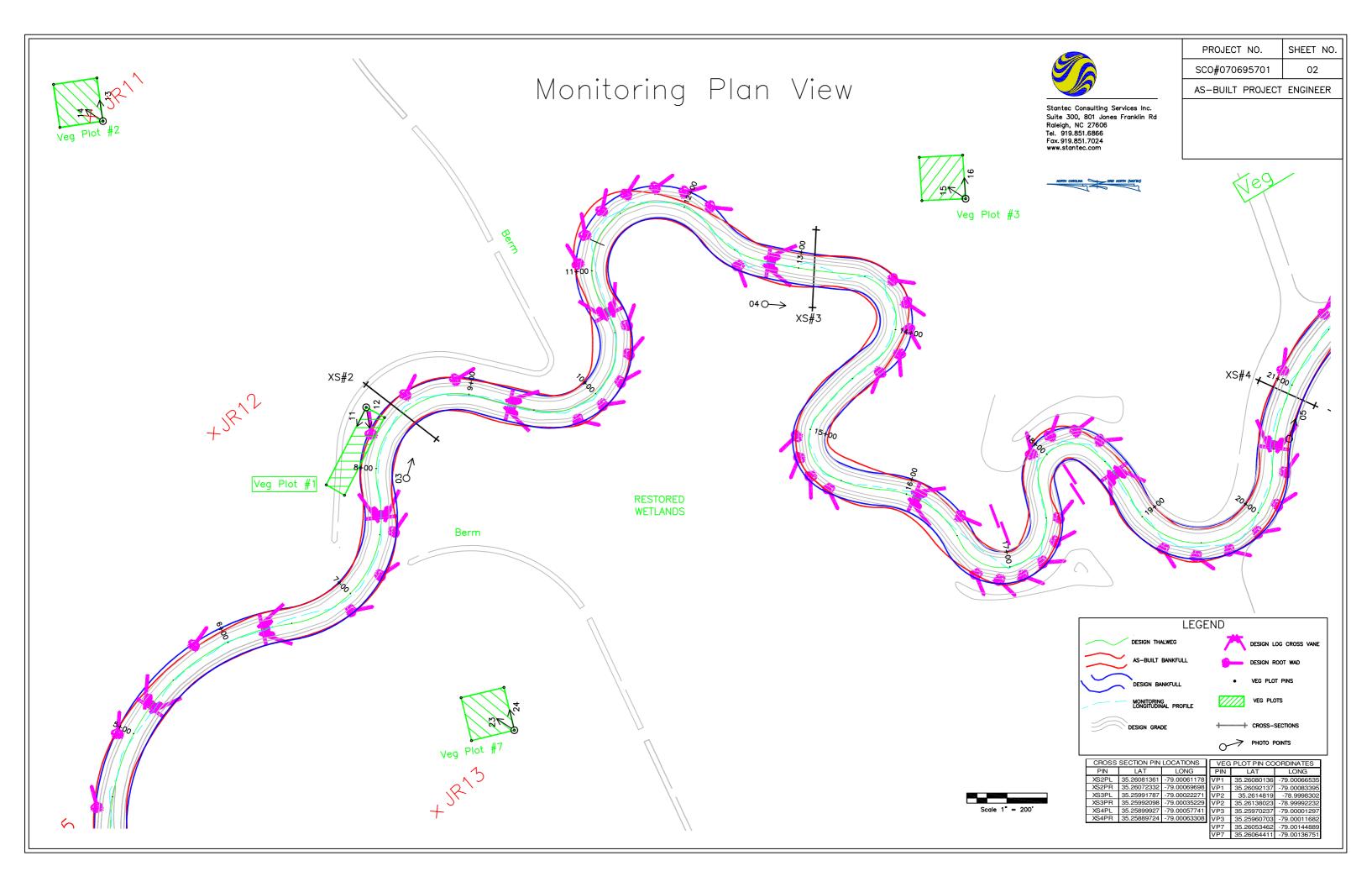

(Nursery Road)

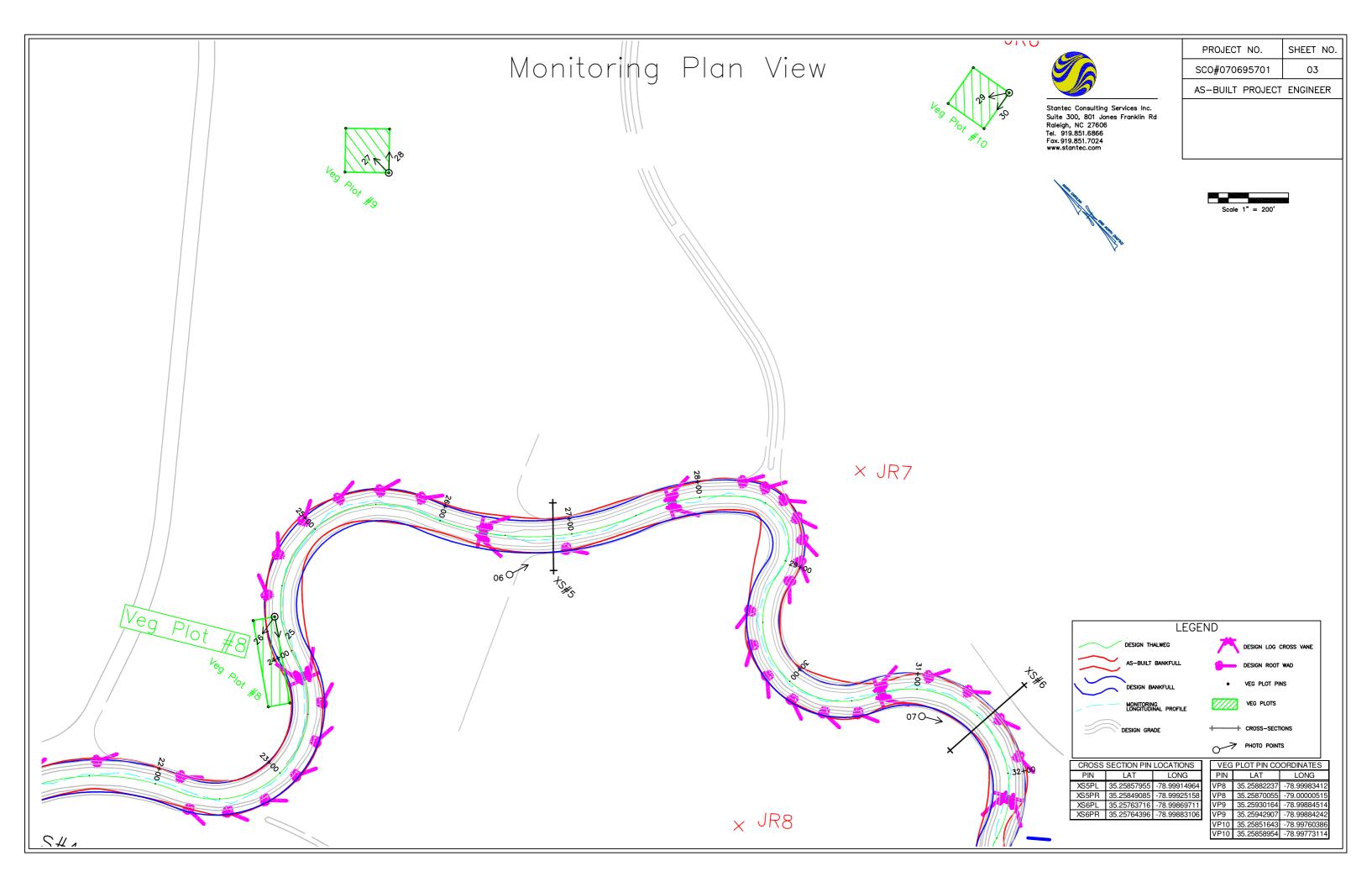
Jumping Run Creek / McLeod's Creek

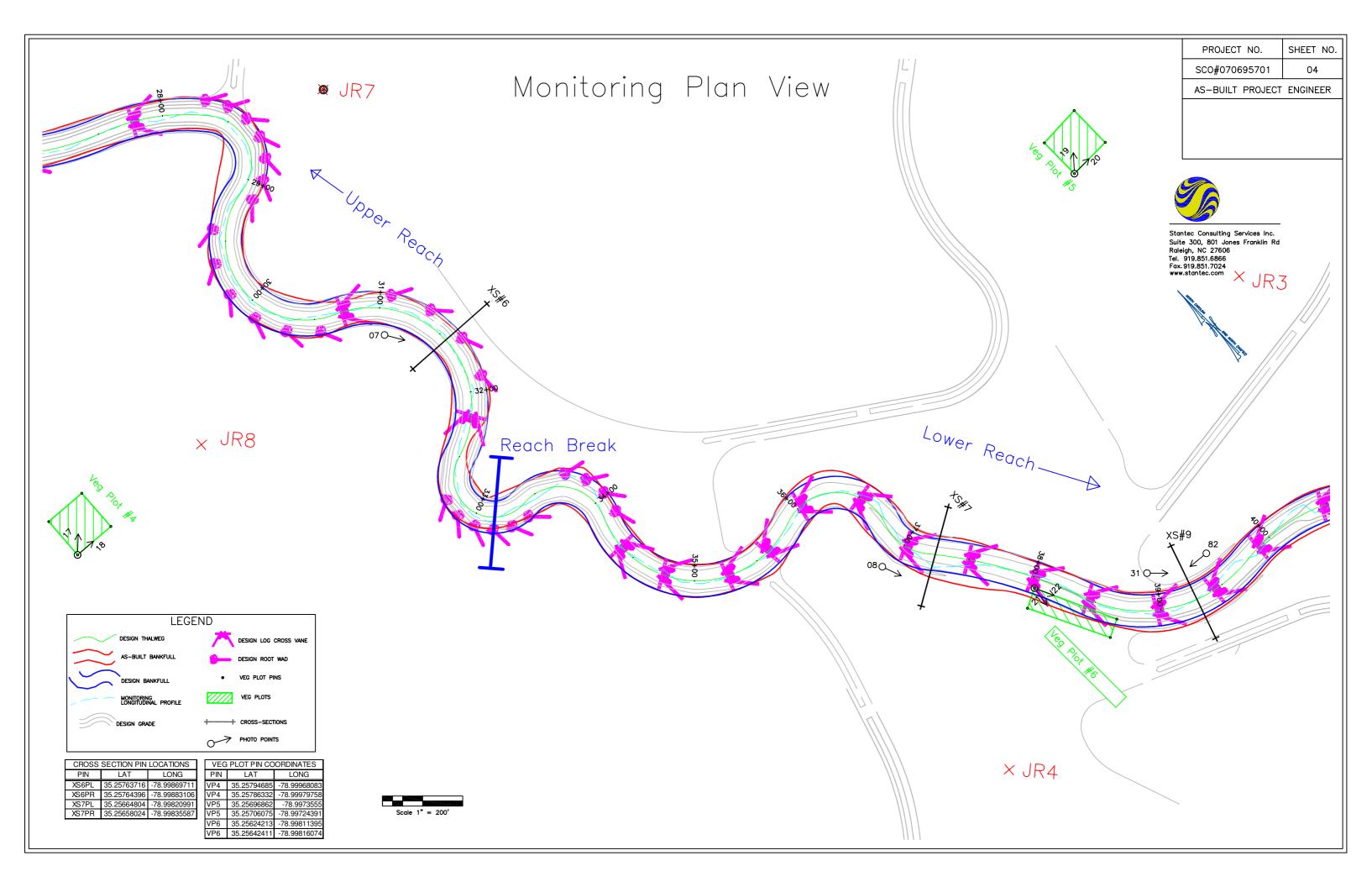
Stream and Wetland Restoration Project

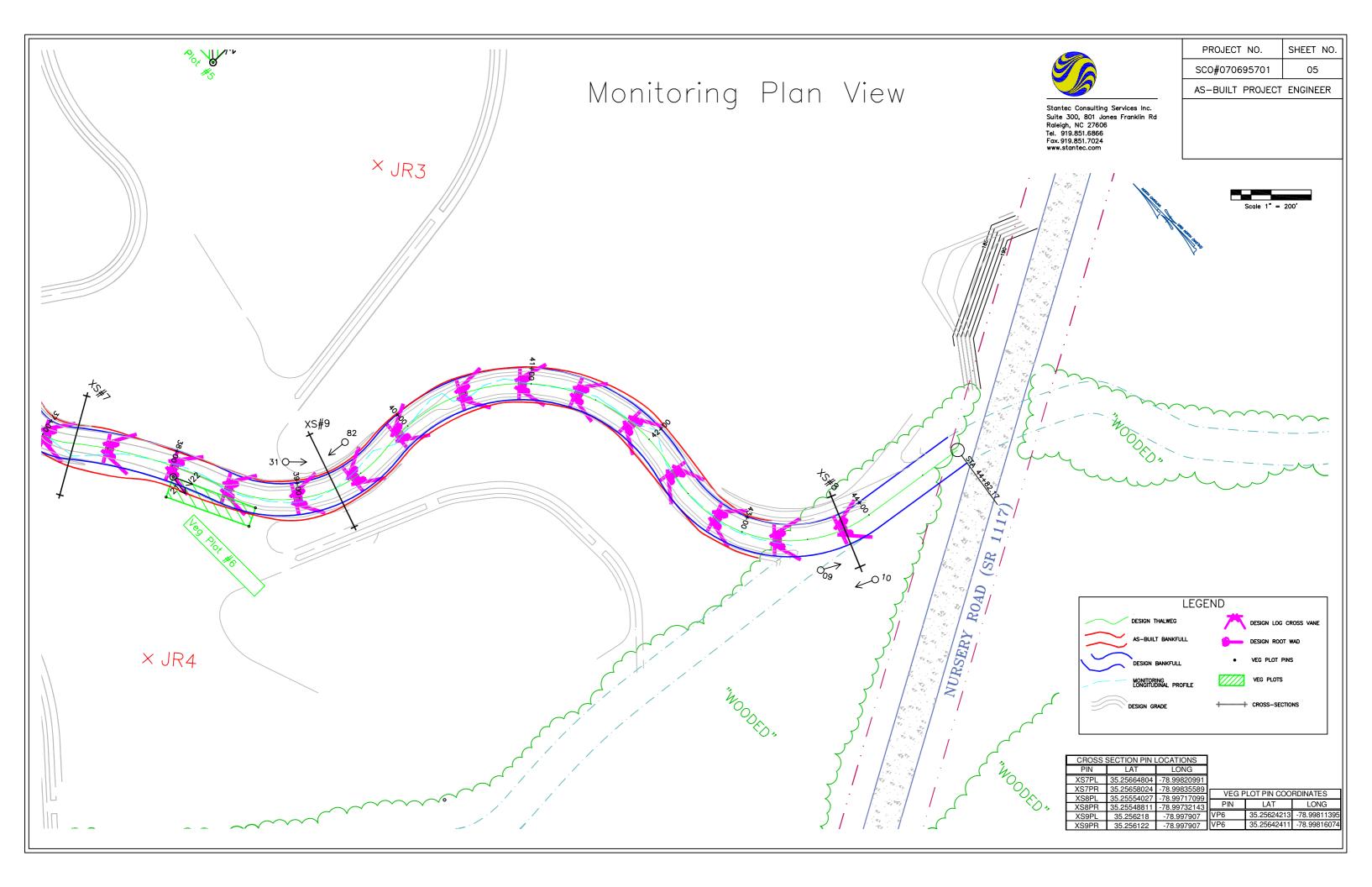

Harnett County, North Carolina

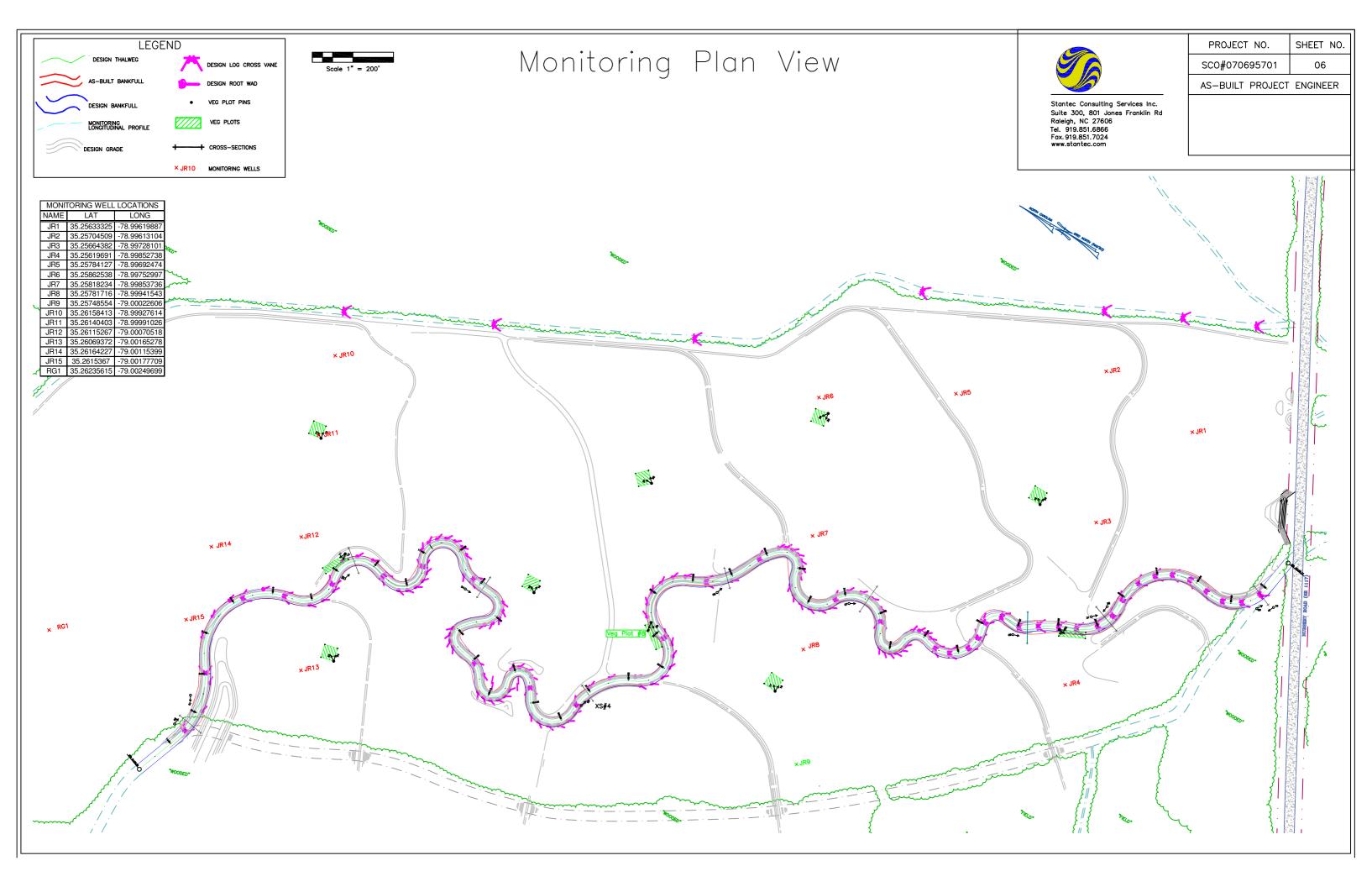

Stantec Consulting Services Inc.
Suite 300, 801 Jones Franklin Rd
Raleigh, NC 27606
Tel. 919.851.6866
Fax. 919.851.7024
www.stantec.com

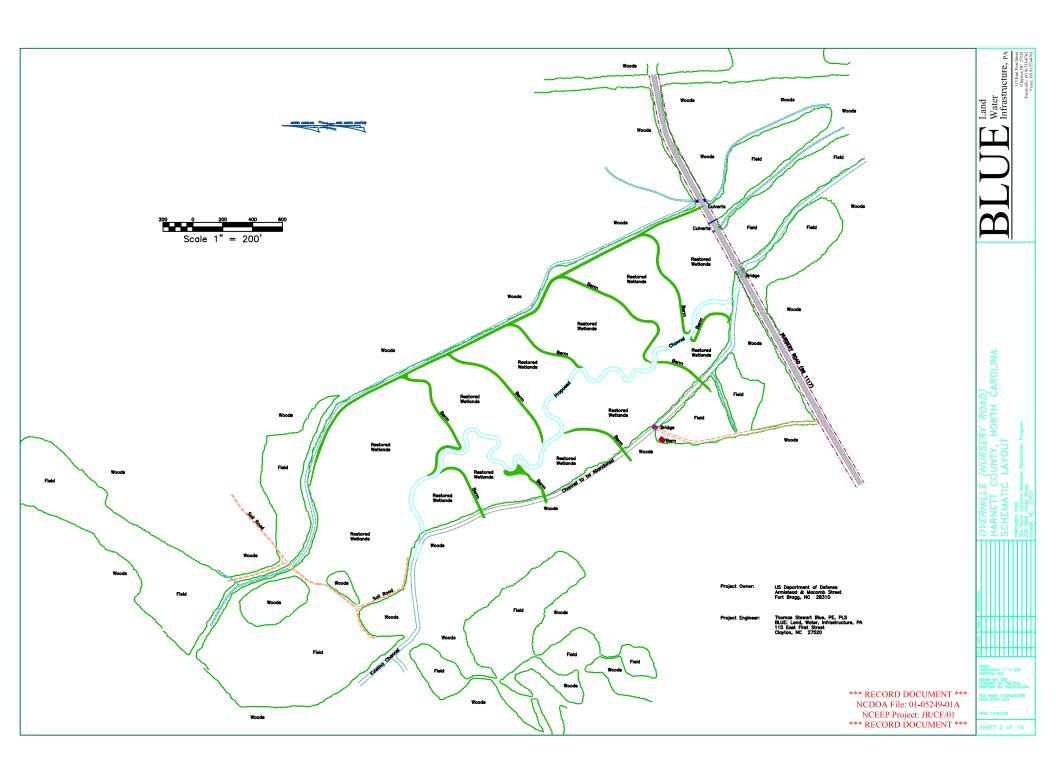



ORIGINAL STREAM RESTORATION DESIGN BY: BLUE: LAND, WATER, INFRASTRUCTURE, PA


Prepared For: The NC Ecosystem Enhancement Program (NCEEP)


April, 2009





2.0 Project Condition and Monitoring Results

2.1 VEGETATION ASSESSMENT

The Carolina Vegetation Survey (CVS) Level 2 methodology was utilized to sample vegetation in September of 2008. Ten 100m² plots have been established throughout the project. In each plot, two plot corners have been permanently located with conduit or rebar.

As per the mitigation plan, the vegetative success criteria are based on the US Army Corps of Engineers Stream Mitigation Guidelines (USACE, 2003). The final vegetative success criteria will be the survival of 260 5-year old planted trees per acre at the end of the year 5 monitoring period. An interim measure of vegetation planting success will be the survival of at least 320 3-year old planted trees per acre at the end of year 3 of the monitoring period.

The Year 2 stem counts within each of the vegetative monitoring plots are included in Exhibit Tables A1 through A5 in Appendix A. Seven of the plots have over 320 stems per acre while three of the plots have less than 320 stems per acre. This is a reported increase in the number of plots meeting the 3-year vegetative success criteria when compared to last year. In monitoring Year 2 a planted *Nyssa biflora* was observed in Plot 9 which had been overlooked in the previous year's monitoring. As such, with the inclusion of this plant Plot 9 now meets the success criteria in both years of monitoring.

2.1.1 Vegetation Problem Areas

In addition to the three failing vegetation plot sites, much of the same vegetation problem areas continue to exist onsite. These sites are referred to as VPA 1, 2, & 3 on the Integrated Current Condition Plan View located in Appendix D. In VPA 1 and 2, persistent flooding has occurred and has caused the majority of the planted woody vegetation to die (Photos 1 & 2 in Appendix A.2). Standing water continues to be present in VPA 1. VPA 3 is currently overrun with invasive species, primarily *Lespedeza* (Photo 3). *Lespedeza* continues to be a major problem on the project site. It is invading dry areas, especially on top of the berms onsite.

2.1.2 Vegetation Current Condition Plan View

Vegetative problem areas are shown on the Integrated Current Condition Plan View in Appendix D.

2.2 STREAM ASSESSMENT

As per the request of NCEEP, the Overhills restoration project was monitored as two separate reaches in Monitoring Year 2. The Upper Reach, classified as a Rosgen C5 stream, runs from the beginning of the project at Station 0+00 to Station 33+00. The Lower Reach, a Rosgen E5 stream, runs from 33+00 to the end of the project at Station 44+00. A new riffle cross-section, Cross Section 9, was added in order to provide sufficient cross-sectional data for the Lower Reach. Other cross-sectional changes this year include the re-designation of Cross Section 7 as a riffle. This cross-section had been designed as a riffle,

but had been referred to as a pool cross-section in the previous year's monitoring report as it exhibited some pool-like characteristics.

2.2.1 Hydrology

A crest gauge was found onsite during the February field visit and is believed to have been placed there prior to the Year 1 monitoring. However, no markings were found on the gauge and therefore cannot be used to verify bankfull events. Other evidence of bankfull events has been observed onsite during field reconnaissance. During a site visit in November of 2008, there was evidence of flooding as seen by flattened vegetation and sediment deposits on the floodplain near Vegetation Plot 3 (Appendix B.4, Photo 1). This likely occurred when Hurricane Hanna passed through the area on September 7, 2008.

Exhibit Table V. Verification of Bankfull Events														
	Overhills/Jumping Run Creek Restoration Project - EEP Project No. 199													
Date of Data	Date of Data Date of Mail 1													
Collection	Collection Occurrence Method Photo													
2008	September, 2008	Field observation	Appendix B.4, Photo 1											

2.2.2 Stream Problem Areas

A major stream problem area is located from station 32+60 to 44+00 where the stream has experienced serious failure. At the downstream end of the Upper Reach, a headcut was first noted to have developed near Station 32+80 in Year 1 monitoring. This headcut continues to move steadily upstream, appearing to have moved approximately 20 feet upstream to Station 32+60 since last year. The headcut most likely first began at the location where the design changes from a C to E type channel between the Upper and Lower reaches at Station 33+00. Downstream from this headcut, most of the in-stream structures have failed. Erosion around the structures has forced the banks to migrate as much as seven feet, making this section of stream extremely unstable (SPA Photo 1&2). Mid-channel bar formation is also occurring along the reach (SPA Photo 5). The headcut and downstream problems are apparent in the longitudinal profile of the channel. The survey data suggest that this section of the stream may not have been transitioned to the existing stream properly. There was a lack of geotextile fabric in the installation and the angle of the structure was not optimal to reduce near bank sheer stress and bank scour.

Minor problem areas such as bank scour and bare floodplains were found from Station 0+00 to Station 32+00 (Upper Reach) of the restoration reach (SPA Photo 4), but overall this area of the restoration appears to be stable (Appendix B.4, Photo 2). Normal water surface elevations are at or near the constructed bankfull, allowing the channel to access the floodplain under very small storm events, reducing shear stress in the channel. The areas immediately surrounding the channel were ponded near the channel banks. The beaver dam near Station 6+30 continues to cause problems such as scour and excessive sediment deposition. Minor scouring and sediment deposition was also observed around the two smaller beaver dams present at the time of the stream monitoring survey on August 12, 2008. The beaver dams were located at Stations 23+15 and 27+77. These are both shown on the longitudinal profiles and monitoring plan view; however, they were not present during the latest site visit in November of 2008. Significant storm events during the early fall most likely washed the dams downstream.

Other problems include downcutting at cross-sections (XS) 4 and 7. At XS4, the stream appears to have incised from the baseline survey to Monitoring Year 1; however, the stream appears relatively stable from

monitoring year 1 to Monitoring Year 2. The initial downcutting was most likely attributed to an undersized channel upstream. In addition, the upstream log cross-vane appears to have failed by not holding the grade of the bed during Year 1. XS7, which is located in the unstable downstream reach, provides evidence that this portion of the reach is actively degrading. The bed will most likely continue to downcut until a less erosive bed layer emerges in the profile to stop the incising. Two log cross-vanes, both upstream and downstream of the cross-section, have failed to hold grade and are contributing additionally to the active degradation of the stream bed.

2.2.3 Stream Current Condition Plan View

Stream problem areas are shown on the Integrated Current Condition Plan View in Appendix D.

2.2.4 Stability Assessment

Exhibit Table VI-A. Categorical Stream Feature Visual Stability Assessment Overhills/Jumping Run Creek Upper Reach- EEP Project No. 199														
Feature Initial MY-01 MY-02 MY-03 MY-04 MY-05														
A. Riffles	76%	76%	100%											
B. Pools	70%	70%	95%											
C. Thalweg	77%	77%	100%											
D. Meanders	91%	91%	100%											
E. Bed General	75%	75%	97%											
F. Bank Condition	74%	73%	97%											
G. Vanes / J Hooks, etc.	36%	34%	77%											
H. Wads and Boulders	65%	63%	NA											

Exhibit Table VI-B. Car	tegorical	Stream Fe	ature Visu	ıal Stabilit	y Assessm	ent								
Overhills/Jumping Run Creek Lower Reach- EEP Project No. 199														
Feature Initial MY-01 MY-02 MY-03 MY-04 MY-05														
A. Riffles	76%	76%	29%											
B. Pools	70%	70%	50%											
C. Thalweg	77%	77%	0%											
D. Meanders	91%	91%	47%											
E. Bed General	75%	75%	50%											
F. Bank Condition	74%	73%	0%											
G. Vanes / J Hooks, etc.	36%	34%	0%											
H. Wads and Boulders	65%	63%	NA											

^{*}Initial and MY-01 include entire stream restoration reach.

2.2.5 Quantitative Measures Summary

						e VII. Ba												
					_	ing Run (•									
Parameter	USC	GS Gage	Data	Regional Curve Interval						Project Stream Reference			Design			Baseline		
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)							11.7	15.9	14.5	10.8	20.4	14.4	21.0	25.0	22.5	18.5	23.2	20.1
Flood Prone Width (ft)							-	ı	16.5	-	-	200.0	ı	-	200	-	1	>200
BF Cross Sectional Area (SF)							54.6	77.5	56.7	13.5	22.1	21.0	35.0	46	41	23.0	49.0	36.0
BF Mean Depth (ft)							2.4	2.5	2.50	1.0	2.7	2.7	2.5	2.5	2.5	1.2	2.7	1.7
BF Max Depth (ft)							2.4	2.5	2.5	1.8	4.2	3.2	2.5	2.5	2.5	2.4	4.8	2.9
Width/Depth Ratio							4.9	6.4	5.8	4.1	8	5.4	8.4	10	9	7.8	15.5	11.7
Entrenchment Ratio							-	-	1.2	-	-	13.9	-	-	8.9	-	-	9.3
Bank Height Ratio							2.5	0.8	2.4	0.6	1.5	1.2	1.0	2.4	1.2	1.0	1.0	1.0
Wetted Perimeter (ft)							-	-	-	-	-	-	-	-	-	19.2	32.6	25.3
Hydraulic Radius (ft)							-	-	-	-	-	-	-	-	-	1.2	3.5	2.2
Pattern																		
Channel Beltwidth (ft)							-	-	600	45	110	77	80	200	110	48	149	100
Radius of Curvature (ft)							-	235	235	12	30	23.4	30	175	80	30	167	68.0
Meander Wavelength (ft)							315	660	500	125	175	150	125	250	200	10	276	220
Meander Width ratio							21.8	45.6	3.5	8.7	12.2	10.4	5.6	11.1	8.9	6.40	13.00	10.10
Profile																		
Riffle Length							-	-	-	-	-	-	-	-	-	12	183	72
Riffle Slope							-	-	-	-	-	-	-	-	-	0.0500	0.1100	0.0810
Pool Length							-	-	ī	-	-	-	-	-	-	8	116	151
Pool Spacing							-	-	-	-	-	-	-	-	-	39	231.00	121
Substrate																		
d50 (mm)							0.5	9	0.5	0.58	0.65	0.62	0.5	9	0.5	0.09	0.27	0.21
d84 (mm)							2.6	30	2.6	1.7	1.7	1.7	2.6	30	2.6	0.36	0.44	0.4
Additional Reach Parameters		I	T		Г	ı									ı			
Valley Length (ft)							_	_	2808		_	230	_	_	2444		_	2444
Channel Length (ft)				1			_	_	3064	_		330	_	_	4400	_	_	4400
Sinuosity									1.1		2.3	1.4		2.1	1.6		_	1.8
Water Surface Slope									-		2.3	-		2.1	7E-04		_	0.0011
BF Slope							_	_					_		7L-04		_	0.0011
Rosgen Classification							G5c	G4	G5c	E5	C5	E5	E	C	E		-	C5
*Habitat Index							USC	04	USC	ES	CJ	EJ	E		E		-	CJ
*Macrobenthos				ł — —											-			
· Macrobellinos																		

^{*}Inclusion will be project specific and determined primarily by As-built monitoring plan/success criteria

Exhibit Table VIII-A. Morphology and Hydraulic Monitoring Summary Overhills Stream Mitigation Site/Project No. 199 Overhills - Upper Reach

Parameter	Cros	s Section	1	Cra	ss Section	on 2		oss Section	n 3	Cros	ss Sectio	n 4	Cro	ss Secti	on 5	Cr	Cross Section 6			
a univer		1+64 Po			8+47 P			13+12 R			0+93 R		Sta 26+86 Pool			Sta 31+56 Riffle				
Dimension	MY0	MY1	MY2	MY0	MY1	MY2	MY0	MY1	MY2	MY0	MY1	MY2	MY0	MY1	MY2	MY0	MY1	MY2		
BF Width (ft)	26.87	24.66	24.42	22.27	22.29	22.4	18.15	18.36	18.94	23.19	22.25	23.11	24.16	24.5	24.63	19.06	19.24	19.23		
Floodprone Width (ft) (approx)	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100		
BF Cross Sectional Area (ft ²)	71.89	67.45	67.39	44.82	51.12	54.18	31.03	31.52	35.19	49.19	59.6	64.86	37.7	40.91	44.36	23.43	25.35	25.4		
BF Mean Depth (ft)	2.74	2.68	2.76	2.01	2.29	2.42	1.71	1.76	1.86	2.12	2.68	2.81	1.56	1.67	1.86	1.23	1.32	1.31		
BF Max Depth (ft)	4.5	4.66	4.8	4.8	4.90	4.8	2.6	2.6	3.0	4.3	5.9	5.6	2.4	2.6	2.7	1.9	2.2	2.1		
Width/Depth Ratio	9.0	10.0	8.9	11.1	9.7	9.3	10.6	10.7	10.2	10.9	8.3	8.2	15.5	14.7	13.7	15.5	14.6	14.7		
Entrenchment Ratio	>3.72	>4.1	>4.1	>4.49	>4.48	>4.46	>5.51	>5.6	>5.3	>4.32	>4.49	>4.33	>4.14	>4.08	>4.06	>5.25	>5.20	>5.20		
Bank Height Ratio			1.0			1.0			1.0			1.0			1.0			1.0		
Wetted Perimeter (ft)			2.6			2.18			1.75			2.4			1.59			1.17		
Hydraulic radius (ft)																				
Substrate							0.27	0.10	0.11	0.093	0.081	0.092				0.27	0.15	0.11		
d50 (mm)							0.41	0.27	0.33	0.36	0.28	0.35				0.44	0.35	0.33		
d84 (mm)							3.37 0.03									1				
	MY-00 (2007)			MY-01 (2007)			MY-02 (2008)		MY-03 (2009)			MY-04 (2010)			MY-05 (2011)		11)			
Parameter	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med		
Pattern	48	149	100	42	146	94	45	152	96											
Channel Beltwidth (ft)	30	167	68.0	35	158	74	36	152	72											
Radius of Curvature (ft)	130	260	220	125	276	205	125	260	195											
Meander Wavelength (ft)	6.40	13.70	10.10	6.30	14.00	10.10	6.12	12.73	9.55											
Meander Width Ratio																				
Profile	20	122	72	20	100	60	22	112	65											
Riffle Length (ft)	0.0011	0.1630	0.0815	0.0016	0.1400	0.0710	0.0011	0.1100	0.0650											
Riffle Slope (ft)	8	116	51.0	14	37	84	10	45	90											
Pool Length (ft)	39	231	121	39	319	111	44	330	120											
Pool Spacing (ft)																				
Additional Reach Parameters		2605			2605			1950												
Valley Length (ft)		4400			4400			3310												
Channel Length (ft)		1.68			2			1.70												
Sinousity		0.0016			0.0015			0.0015												
Water Surface Slope (ft/ft)		0.0012			0.0011			0.0011												
BF Slope (ft/ft)				С		C5														
Rosgen Classification																				
*Habitat Index																				
*Macrobenthos																				

Exhibit Table VIII - B. Morphology and Hydraulic Monitoring Summary Overhills Stream Mitigation Site/Project No. 199 Overhills - Lower Reach

Parameter	Cros	s Section	7 [†]	Cro	oss Secti	on 8	Cro	ss Section	n 9 ^Ŧ									
	Sta 3	37+24 Rif	fle	Sta	43+82 1	Pool	Sta 39+29 Riffle											
Dimension	MY0	MY1	MY2			MY2	MY0	MY1	MY2									
BF Width (ft)	16.54	16.68	16.68	27.1	27.72	27.69			26.71									
Floodprone Width (ft) (approx)	>100	>100	>100	>100	>100	>100			>100									
BF Cross Sectional Area (ft ²)	35.21	39.41	40.8	106.1	110.97	113.53			62.93									
BF Mean Depth (ft)	2.13	2.36	2.45	3.92	4	4.1			2.36									
BF Max Depth (ft)	3.5	3.7	4.2	7.4	7.1	6.9			5.0									
Width/Depth Ratio	7.8	7.1	6.8	6.9	6.9	6.8			11.3									
Entrenchment Ratio	>6.05	>6.0	>6	>3.69	>3.61	>3.61			>3.75									
Bank Height Ratio			1.0			1.0			1.0									
Wetted Perimeter (ft)			20.18			32.59			29.5									
Hydraulic radius (ft)			2.29			3.49			2.13									
Substrate																		
d50 (mm)									0.12									
d84 (mm)									0.35									
Parameter	MY-00 (2007)			MY-01 (2007)			MY-02 (2008)			MY-03 (2009)		MY-04 (2010)			M	MY-05 (2011)		
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)							66	130	94									
Radius of Curvature (ft)							39	150	85									
Meander Wavelength (ft)							126	352	190									
Meander Width Ratio							4.72	13.18	7.13									
Profile																		
Riffle Length (ft)							20	46	32									
Riffle Slope (ft)							0.0021	0.0128	0.0077									
Pool Length (ft)							20	50	30									
Pool Spacing (ft)							29	102	57									
Additional Reach Parameters																		
Valley Length (ft)								929										
Channel Length (ft)								1171										
Sinousity								1.3										
Water Surface Slope (ft/ft)								0.0033										
BF Slope (ft/ft)							0.0012											
Rosgen Classification								E5										
*Habitat Index																		
*Macrobenthos																		

^{*}Inclusion will be project specific and determined primarily by As-built monitoring plan/success criteria

^TCross Section 9 added in Year 2 to provide sufficient cross-sectional data for the Lower Reach as requested by NCEEP

2.3 WETLAND ASSESSMENT

2.3.1 Wetland Criteria Attainment

A site is considered to meet the requirements for wetland hydrology if the groundwater saturation is within 12 inches of the ground surface consecutively for 12.5% of the growing season. Fifteen groundwater monitoring wells are currently active on the project site. All 15 wells met the success criteria during the growing season of 2008 (Appendix C). The growing season in this area is from March 18th to November 8th for a total of 234 days (NRCS 2002).

A reference well was installed in the vicinity of the site on October 2, 2007. This site served as the reference site for the overstory vegetation and the wetland restoration. The site is a Coastal Plain Small Stream Swamp located along Muddy Creek, west of Overhills Lake. Data was collected from October 2 until the present (Figure 1). Refer to the Overhills Stream and Wetland Restoration Plan for more specific details on the physical and biological characteristics of the reference site. The reference well met the success criteria, with a maximum of 71 consecutive days of saturation within 12 inches of the ground surface. Precipitation this year fell between the 30th and 70th percentiles for all months during the growing season except March, June and October which fell just below the 30th percentile. April and September precipitation fell well above the 70th percentile.

	Overhills	Exhibit Table IX Jumping Run Cree)
Tract	Well ID	Well Hydrology Threshold Met?	Tract Mean	Vegetation Plot ID	Vegetation Density Met (320 stems/acre)	Tract Mean
Site	1	Y		VP1	Y (405)	
	2	Y		VP2	N (162)	1
	3	Y		VP3	N (243)	70%
	4	Y		VP4	Y (364)	Ī
	5	Y		VP5	N (121)	1
	6	Y		VP6	Y (1093)	1
	7	Y	.	VP7	Y (364)	1
	8	Y	100%	VP8	Y (688)	1
	9	Y		VP9	Y (324)	1
	10	Y		VP10	Y (445)	†
	11	Y				(421 stems/acre)
	12	Y				stems/acre)
	13	Y				Ī
	14	Y				1
	15	Y				1
Reference	Ref Site 1	Y	100%			

2.3.2 Current Condition Plan View

The plan view for the wetland problem areas is located in the Integrated Current Condition Plan View in Appendix D.

3.0 References

Harrelson, C.C., C.L. Rawlins and J.P. Potyondy. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. United States Department of Agriculture, Fort Collins, CO.

Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2006. CVS-EEP Protocol for Recording Vegetation, Version 4.0 (http://cvs.bio.unc.edu/methods.htm).

NC CRONOS. 2008. NC CRONOS Database – Dunn 4 NW (312500). North Carolina State University. State Climate Office of North Carolina. http://www.nc-climate.ncsu.edu/cronos.

NCEEP. 2006. Content, Format and Data Requirements for EEP Monitoring Reports. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, NC. Version 1.2 November 16, 2006.

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.

USACE. 2003. Stream Mitigation Guidelines. United States Army Corps of Engineers, Wilmington Regulatory District; North Carolina Division of Water Quality; United Stated Environmental Protection Agency, Region IV; Natural Resources Conservation Service; and North Carolina Wildlife Resources Commission. April 2003.

Weakley, Alan S. 2007. Flora of the Carolinas, Virginia, Georgia, and surrounding areas. University of North Carolina Herbarium. Chapel Hill, NC. Working draft of January 11, 2007.

Appendix A. Vegetation Raw Data

A.1 VEGETATION DATA TABLES

EXHIBIT TABLE A1. VEGETATION METADATA

EXHIBIT TABLE AT. VEGETATION	
Report Prepared By	Kristin Weidner
Date Prepared	10/27/2008 10:18
Database Name	Stantec-Overhills_MillBranch-2008-B-v226-yr0-yr1-yr2mdb
Database Location	U:\171300168\CVS_databases\Overhills_MillBranch
Computer Name	WEIDNERK-SP1
DESCRIPTION OF WORKSHEETS II	N THIS DOCUMENT
	This worksheet, which is a summary of the project and the project
Metadata	data.
	Each project is listed with its PLANTED stems, for each year. This
Proj, planted	excludes live stakes and lists stems per acre.
	Each project is listed with its TOTAL stems, for each year. This
	includes live stakes, all planted stems, and all natural/volunteer
Proj, total stems	stems. Listed in stems per acre.
Plots	List of plots surveyed.
Vigor	Frequency distribution of vigor classes.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
	List of most frequent damage classes with number of occurrences
Damage	and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	Count of total living stems of each species (planted and natural
	volunteers combined) for each plot; dead and missing stems are
ALL Stems by Plot and spp	excluded.
PROJECT SUMMARY	
	Peet, R.K., T.R. Wentworth, M. P. Schafale & A.S. Weakley. 2004.
	Carolina Vegetation Survey database. Version 3.0. North Carolina
Metadata	Botanical Garden. Chapel Hill, NC 27599
Project Code	199
Project Name	Overhills Stream and Wetland Restoration
Description	Stream and Wetland Restoration
River Basin	Cape Fear
Length(ft)	4482
Stream-to-edge width (ft)	500
Area (sq m)	0.1
Required Plots (calculated)	NA
Sampled Plots	10

EXHIBIT TABLE A2. VEGETATION VIGOR BY SPECIES

	Species	4	3	2	1	0	Missing
	Cephalanthus occidentalis	5	4	1	1		
	Cornus amomum	4	4	3		1	
	Cyrilla racemiflora		1				
	Fraxinus pennsylvanica	7					
	Nyssa biflora	8	15				3
	Quercus nigra	1					
	Quercus phellos	2					1
	Salix nigra		5		1		
	Sambucus canadensis	1	2	5		3	1
	Sambucus nigra	1					
	Taxodium distichum	21	6				
	Morella cerifera	2					
	Magnolia grandiflora	2					1
	Unknown	2					
TOT:	14	56	37	9	2	4	6

EXHIBIT TABLE A3. VEGETATION DAMAGE BY SPECIES

LAIIIL	SII TABLE AS. VEGETATIO	II DAN	IAGE	וטו	JI L	CIL	3
	Species	All	Mo Mage Car	Floringe 1690ries	Sii.	100 M	momulation of the second
	Cephalanthus occidentalis	11	9	1	1		
	Cornus amomum	13	12			1	
	Cyrilla racemiflora	1	1				
	Fraxinus pennsylvanica	7	7				
	Magnolia grandiflora	3	3				
	Morella cerifera	2	2				
	Nyssa biflora	27	27				
	Quercus nigra	1	1				
	Quercus phellos	4	4				
	Salix nigra	6	6				
	Sambucus canadensis	12	8	1	2	1	
	Sambucus nigra	1	1				
	Taxodium distichum	27	27				
	Unknown	2	2				
TOT:	14	117	110	2	3	2	

EXHIE	BIT TABLE A4. VEGETAT	ION E) AMA	AGE	ВΥ	PLO	т
	10/0	AII.C	No Jamage C	Fl. Jamage Categorie	Sa. 00/15	100 W	io, umo modelli di si constituti di si c
	Overhills-01-0001-year:2	11	10	1			
	Overhills-01-0002-year:2	4	4				
	Overhills-01-0003-year:2	7	7				
	Overhills-01-0004-year:2	9	9				
	Overhills-01-0005-year:2	3	3				
	Overhills-01-0006-year:2	34	29		3	2	
	Overhills-01-0007-year:2	11	11				
	Overhills-01-0008-year:2	19	18	1			
	Overhills-01-0009-year:2	8	8				
	Overhills-01-0010-year:2	11	11				
TOT:	10	117	110	2	3	2	

EXHIBIT TABLE	A5-A. STEM COUN	IT B	Y PI	LOT	AND	SPE	CIES	3 - Ye	ar 2						
	Species	200	# 19 Pan	ave stem	Dlo, Stems	Olo, Oloming	Plos Pills OOL	00, Verill 0002	000, Chilling 0003	100, 000 1185 000 12 12 12 12 12 12 12 12 12 12 12 12 12	Overhille 1005.	000 Sept. 2.01.000 Sept. 2	000 Vehill 0005	0/0, Vehiii / 000, Vehi:2	5.7.00 00 00 00 00 00 00 00 00 00 00 00 00
Cephalanth	nus occidentalis	11	2	6	4					7					
Cornus am		11	3	4	1					6		4			
Cyrilla race	miflora	1	1	1	1										
	ennsylvanica	7	4	2			2	3			1		1		
Magnolia g	randiflora	2	1	2						2					
Morella cer		2	2	1						1		1			
Nyssa biflo	ra	23	8	3	2		2	4	1		2	4	3	5	
Quercus ni		1	1	1								1			
Quercus pl	nellos	2	1	2						2					
Salix nigra		6	3	2	2					2		2			
Sambucus	canadensis	8	2	4						6		2			
Sambucus	nigra	1	1	1								1			
Taxodium o	distichum	27	9	3		4	2	2	2	1	4	2	4	6	
Unknown		2	1	2							2				
TOT: 14		104	14		10	4	6	9	3	27	9	17	8	11	
Total Plant	ted Stems/Acre				405	162	243	364	121	1093	364	688	324	445	

EXHIE	EXHIBIT TABLE A5-A. STEM COUNT BY PLOT AND SPECIES - Year 1														
	Socies	100	# Plans	90% Nems	Aln: Stems	JOVETHIII	000, 000 1100 001 0001 0001 0001	000 000 000 000 000 000 000 000 000 00	Overhill	1000 100 Vear.	Plos Carilles of Suc.	Olos Overhill	0/6, Verhii, 0002	DIC, Verhiii COOC Vear:	0.0 Verniis-01-00 06-year:
	Cephalanthus occidentalis	11	2	5.5	4					7					
	Cornus amomum	12	3	4	1					6		5			
	Cyrilla racemiflora	1	1	1	1										
	Fraxinus pennsylvanica	7	4	1.75			2	3			1		1		
	Magnolia grandiflora	2	1	2						2					
	Morella cerifera	2	2	1						1		1			
	Nyssa biflora	23	9	2.56	1		3	3	1	1	4	4	1	5	
	Quercus nigra	1	1	1								1			
	Quercus phellos	4	2	2	1					3					
	Salix nigra	6	3	2	2					2		2			
	Sambucus canadensis	8	2	4						6		2			
	Sambucus nigra	1	1	1								1			
	Taxodium distichum	27	9	3		4	2	2	2	1	4	2	4	6	
	Unknown	3	2	1.5							2		1		
TOT:	14	108	14		10	4	7	8	3	29	11	18	7	11	
	Total Planted Stems/Acre				405	162	283	324	121	1174	445	728	283	445	

EXHIBIT TABLE A6. VEGETATION PROBLEM AREAS

Feature/Issue	Station # / Range	Probable Cause	Photo #
Death of trees and plants	VPA1 & VPA2	Persistent flooding	1 & 2
		Invasion of	
Invasive/exotic species	VPA3	Lespedeza	3

^{*}The location of vegetation problem areas is show in the Integrated Current Condition Plan View map in Appendix D

A.2 VEGETATION PROBLEM AREA PHOTOS

Photo 1. Flooding in VPA-1 facing northeast. Ponding causing vegetation failure (11/07/2008).

Photo 2. Frequent ponding in VPA-2 causing lack of woody vegetation (11/07/2008).

Photo 3. Invasive species, *Lespedeza*, in VPA3 (11/07/2008).

A.3 VEGETATION MONITORING PLOT PHOTOS

Note: Due to a camera malfunction, plot photos were taken at a later date than vegetation sampling.

Photo Station 11. Veg Plot 1 – looking north (11/07/2008).

Photo Station 12. Veg Plot 1 – looking northeast (11/07/2008).

Photo Station 13. Veg Plot 2 – looking northeast (11/07/2008).

Photo Station 14. Veg Plot 2 – looking north (11/07/2008).

Photo Station 15. Veg Plot 3 – looking northeast (11/07/2008).

Photo Station 16. Veg Plot 3 – looking north (11/07/2008).

Photo Station 17. Veg Plot 4 – looking northeast (11/07/2008).

Photo Station 18. Veg Plot 4 – looking east (11/07/2008).

Photo Station 19. Veg Plot 5 – looking northeast (11/07/2008).

Photo Station 20. Veg Plot 5 – looking east (11/07/2008).

Photo Station 21. Veg Plot 6 – looking southwest (11/07/2008).

Photo Station 22. Veg Plot 6 – looking west (11/07/2008).

Photo Station 23. Veg Plot 7 – looking north (11/07/2008).

Photo Station 24. Veg Plot 7 – looking northeast (11/07/2008).

Photo Station 25. Veg Plot 8 – looking southwest (11/07/2008).

Photo Station 26. Veg Plot 8 – looking west (11/07/2008).

Photo Station 27. Veg Plot 9 – looking north (11/07/2008).

Photo Station 28. Veg Plot 9 – looking northeast (11/07/2008).

Photo Station 29. Veg Plot 10 – looking northwest (11/07/2008).

Photo Station 30. Veg Plot 10 – looking west (11/07/2008).

Appendix B. Geomorphologic Raw Data

B.1 PROBLEM AREA PLAN VIEW (STREAM)

Please see the Integrated Problem Area Plan View in Appendix D for stream problem areas.

B.2 STREAM PROBLEM AREAS TABLE

	Overhills/Jumpin	g run Creek Restor	ation Project - EEP No. 199		
MAJOR PROBLEM AREA	AS				
Feature/Issue	Stream Reach	Station # / Range	Probable Cause	ID	Photo #
Headcut	Lower reach	33+00	In-stream structural failure	SPA 1	1
Bank Erosion/Migration	Lower reach	33+00 to 44+00	Headcut formation, in-stream structural failure	SPA 1	1 &2
Mid-channel Bar Formation	Lower reach	33+00 to 44+00	In-stream structural failure	SPA 1	5
Scour/Sedimentation	Upper reach	6+30	Beaver dam	SPA 9	3
Scour/Sedimentation	Upper reach	23+15	Beaver dam	SPA 9	NA
Scour/Sedimentation	Upper reach	27+77	Beaver dam	SPA 9	NA
MINOR PROBLEM AREA	AS				
Bank Erosion/Bare Floodplain	Upper reach	0+00 to 32+00	Excess near bank shear stress	SPA 2-8	4

B.3 REPRESENTATIVE STREAM PROBLEM AREAS PHOTOS

Photo 1. Looking downstream at a severely eroded bank and failed structure (10/23/08).

Photo 2. Looking upstream at failed bank and structure, near headcut at Sta. 33+00 (10/23/08).

Photo 3. Beaver dam with scour on right bank (2/08/2008).

Photo 4. Bare floodplain and minor bank scour (10/23/2008).

Photo 5. Mid-channel bar formation at Cross section 6 (8/12/2008).

B.4 STREAM REPRESENTATIVE PHOTOS AND PHOTO STATION PHOTOS

Photo 1. Evidence of bankfull overflow near Vegetation Plot 3 (11/07/2008).

Photo 2. Typical example of the restored channel upstream of headcut area.

Photo Station 1. Beginning of Reach Cross section 1 – looking upstream (11/07/2008) (Note: Locations of stations are shown on the monitoring plan view).

Photo Station 2. Cross section 1 – looking downstream (8/12/2008).

Photo Station 3. Cross section 2 – looking downstream (8/12/2008).

Photo Station 4. Cross section 3 – looking downstream (8/12/2008).

Photo Station 5. Cross section 4 – looking downstream (8/12/2008).

Photo Station 6. Cross section 5 – looking downstream (8/12/2008).

Photo Station 7. Cross section 6 – looking downstream (8/12/2008).

Photo Station 8. Cross section 7 – looking downstream (8/12/2008).

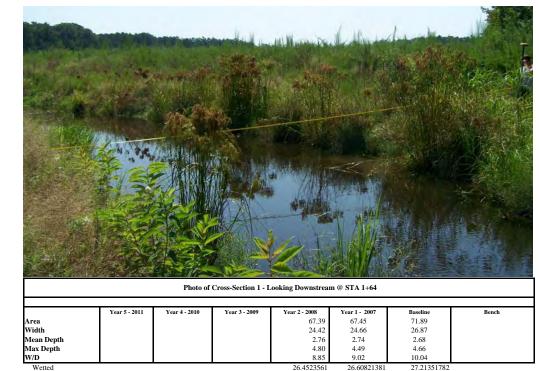
Photo Station 9. Cross section 8 – looking downstream (8/12/2008).

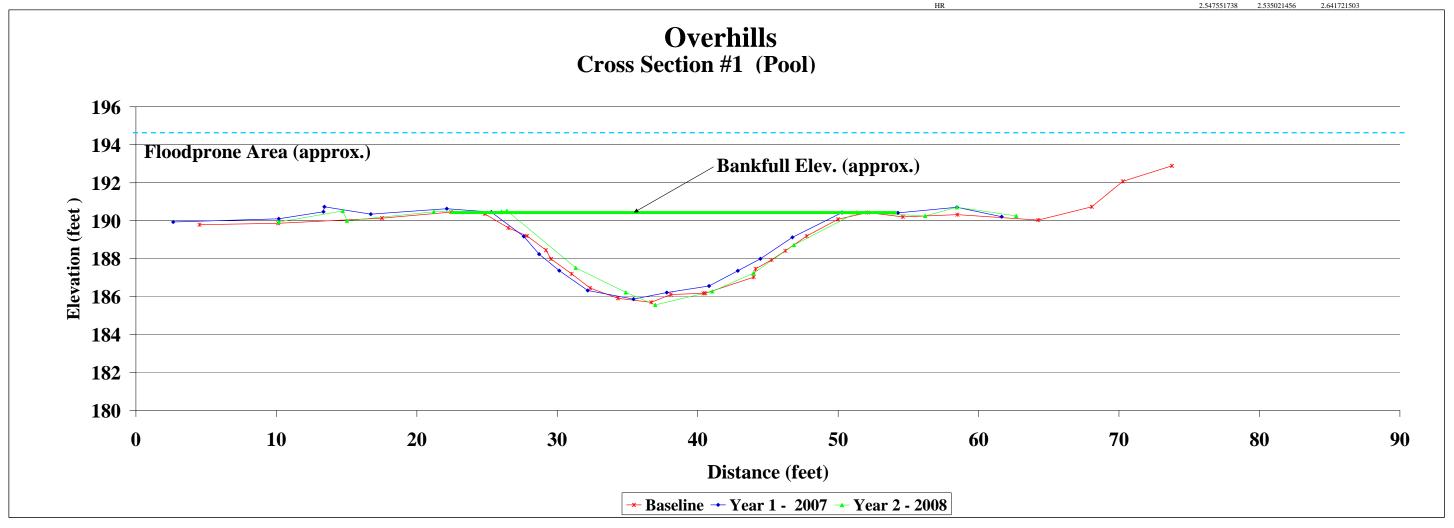
Photo Station 10. End of Project – Cross section 8 - looking upstream (8/12/2008).

Photo Station 31. Cross-section 9 looking downstream (8/12/08).

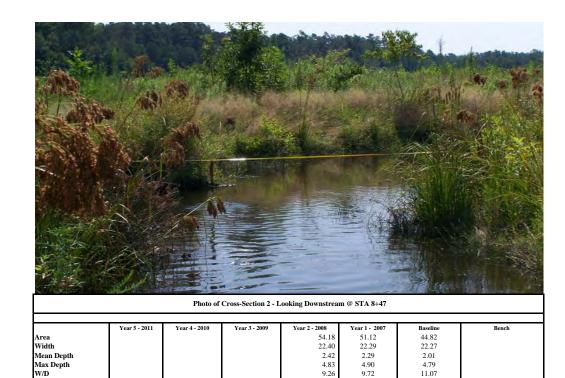
Photo Station 32. Cross section 9 looking upstream (8/12/08).

B.5 QUALITATIVE VISUAL STABILITY ASSESSMENT

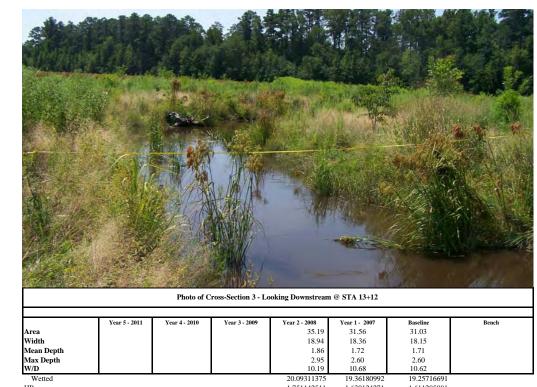

	Exhibit Table B.2A. Visual Morpho	ological Stabil	ity Assessn	nent		
	Overhills/Jumping Run Creek Upper	r Reach - EEP	Project N	о. 199		
Feature Category	Metric (per As-built and reference baselines)	(# Stable) Number Performing as Intended	Total Number per As- built	Total Number/Feet in Unstable State	% Perform in Stable Condition	Feature Perform. Mean or Total
A. Riffles	1. Present?	14	14		100%	
	2. Armor stable (eg no displacement?)	N/A	N/A			
	3. Facet grade appears stable?	14	14		100%	
	4. Minimal evidence of embedding/fining?	N/A	N/A			
	5. Length appropiate?	14	14		100%	100%
B. Pools	1. Present? (e.g. not subject to severe aggrad. or migrat.?)	14	14		100%	
	2. Sufficiently deep (Max Pool D:Mean Bkf > 1.6?)	14	14		100%	
	3. Length appropriate?	12	14		86%	95%
C. Thalweg	Upstream of meander bend (run/inflection) centering?	16	16		100%	
	Downstream of meander (glide/inflection) centering?	16	16		100%	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	23	23		100%	
	Of those eroding, # w/concomitant point bar formation?	0	0		100%	
	3. Apparent Rc within spec?	23	23		100%	
	4. Sufficient floodplain access and relief?	23	23		100%	100%
E. Bed General	General channel bed aggradation areas (bar formation) Channel bed degradation - areas of increasing		3200	100	97%	
	down-cutting or head-cutting?		3200	100	97%	97%
F. Bank	Actively eroding, wasting, or slumping bank?		3200	100	97%	97%
G. Vanes	1. Free of back or arm scour?	12	15		80%	
	2. Height appropriate?	12	15		80%	
	3. Angle and geometry appear appropriate?	10	15		67%	
	4. Free of piping or other structural failures?	12	15		80%	77%
H. Wads/Boulders	1. Free of scour?	n/a	n/a		n/a	n/a
	2. Footing stable?	n/a	n/a		n/a	n/a

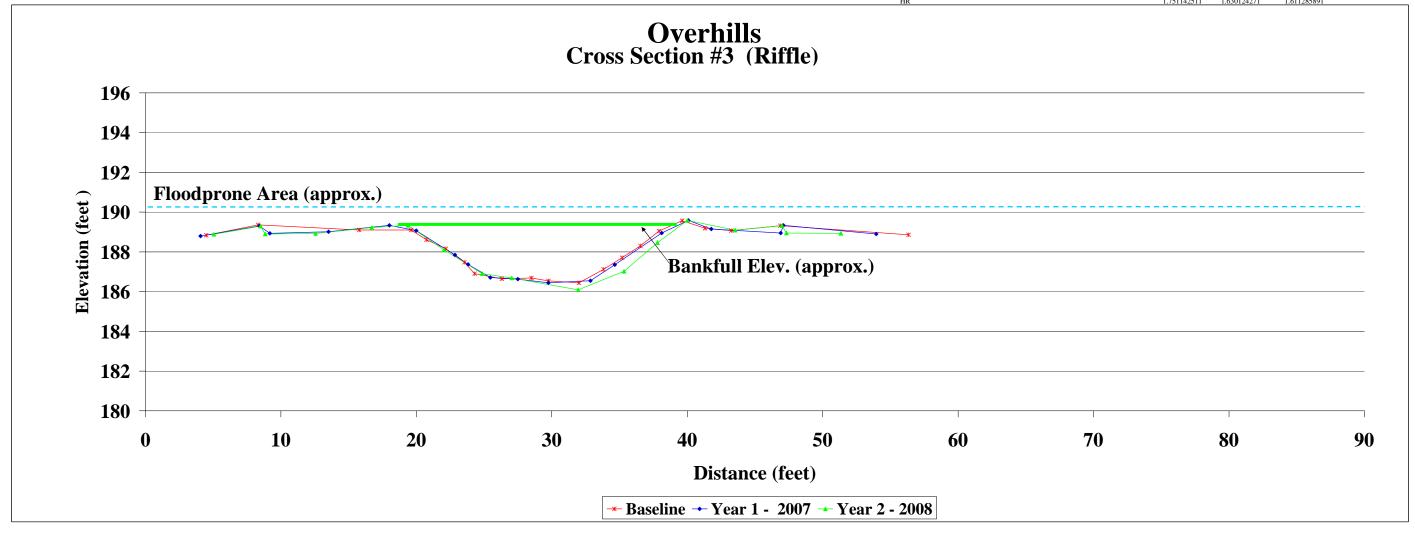

	Exhibit Table B.2B. Visual Morpho Overhills/Jumping Run Creek Lower	-	-			
Feature Category	Metric (per As-built and reference baselines)	(# Stable) Number Performing as Intended	Total Number per As- built	Total Number/Feet in Unstable State	% Perform in Stable Condition	Feature Perform. Mean or Total
A. Riffles	1. Present?	1	7		14%	
	2. Armor stable (eg no displacement?)	N/A	N/A			
	3. Facet grade appears stable?	1	7		14%	
	4. Minimal evidence of embedding/fining?	N/A	N/A			
	5. Length appropiate?	4	7		57%	29%
B. Pools	Present? (e.g. not subject to severe aggrad. or migrat.?)	5	8		63%	
	2. Sufficiently deep (Max Pool D:Mean Bkf > 1.6?)	6	8		75%	
	3. Length appropriate?	1	8		13%	50%
	Upstream of meander bend (run/inflection)	1	Ü		1370	3070
C. Thalweg	centering?	0	6		0%	
	Downstream of meander (glide/inflection) centering?	0	6		0%	0%
D. Meanders	Outer bend in state of limited/controlled erosion? Of those eroding, # w/concomitant point bar	0	9		0%	
	formation?	3	9		33%	
	3. Apparent Rc within spec?	9	9		100%	
	4. Sufficient floodplain access and relief?	5	9		56%	47%
E. Bed General	General channel bed aggradation areas (bar formation) Channel bed degradation - areas of increasing		1200	100	92%	
	down-cutting or head-cutting?		1200	1110	8%	50%
F. Bank	1. Actively eroding, wasting, or slumping bank?		1200	1200	0%	0%
G. Vanes	1. Free of back or arm scour?	0	22		0%	
	2. Height appropriate?	0	22		0%	
	3. Angle and geometry appear appropriate?	0	22		0%	
	4. Free of piping or other structural failures?	0	22		0%	0%
H. Wads/Boulders	1. Free of scour?	n/a	n/a		n/a	n/a
	2. Footing stable?	n/a	n/a		n/a	n/a

B.6 CROSS SECTION PLOTS


See following page for cross section plots.

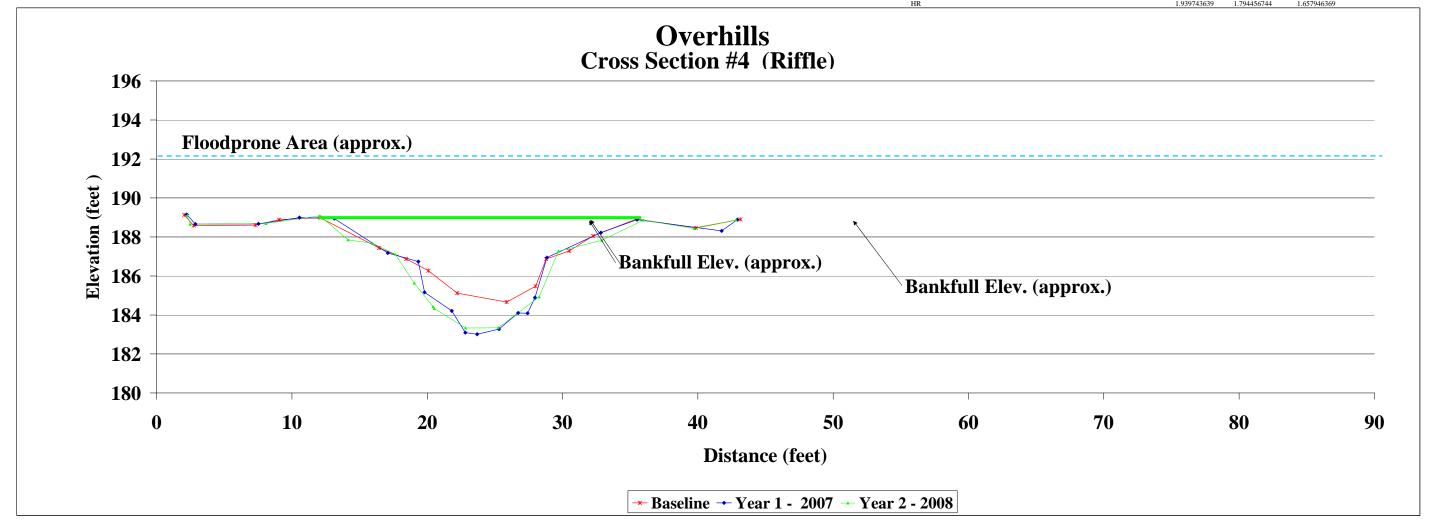
34.88 186.22 2.201272	
Vear 5 - 2011 2011 Survey Station Elevation Notes Stat	
Station Elevation Notes Station Elevation Station	
Station Stat	
Station Flevation Notes Station Elevation Station Elevation Station Elevation Notes Station Elevation Notes Station Elevation Elevation Station Elevation Elevation Station Elevation Elev	
10.17 189.93 Left Pin 1.265 189.93 Left Pin 1.473 190.51 10.17 190.1 10.17 190.1 10.13 189.86 150.3 190.47 0 13.42 190.73 22.45 190.45 190.47 0 13.42 190.73 22.45 190.45 26.03 190.48 0 LBK 16.72 190.34 24.85 190.35 24.85 190.35 26.42 190.52 5.43901 22.13 190.63 26.52 189.62 1 31.32 187.52 3.789934 25.3 190.45 2.455238 LBK 27.86 189.2 1 34.88 186.22 2.201272 27.61 189.17 1.440451 29.2 188.45 0 36.98 185.56 4.11764 28.71 188.24 186.24 92.2 188.45 0 41.03 186.27 3.083261 30.15 187.37 2.276598 31.02 187.2 2 43.96 187.23 3.260383 32.17 186.32 3.299012 32.34 186.45 2 45.66 188.72 4.966 188.72 4.966 188.72 4.966 188.72 3.920912 32.34 186.45 2 56.2 190.25 40.84 190.71 Right Pin 42.86 187.23 3.20558 38.09 186.11 2 58.46 190.71 Right Pin 42.86 190.25 40.41 188.12 3.572916 43.99 187.02 0 44.77 189.92 189.25 149.44 189.12 3.572916 43.99 187.02 0 50.25 190.	Notes Notes
14.73 190.51 190.17 190.1 10.13 189.86 15.03 190.04 13.35 190.47 190.37 22.45 190.45 190.45 26.03 190.48 0 LBK 16.72 190.34 24.83 190.36 26.52 189.62 189	
15.03 190	Lett Pil
21.21 190.47 0 188.42 190.73 24.48 190.36 26.42 190.52 5.43901 22.13 190.63 24.83 190.36 26.42 190.52 5.43901 22.13 190.63 26.52 189.62 1 31.32 187.52 3.789934 25.3 190.45 2.455238 LBK 27.86 189.2 1 34.88 186.22 2.201272 27.61 189.77 1.440451 29.2 188.45 0 36.98 185.56 4.111764 28.71 188.24 1.682409 29.55 187.98 1 41.03 186.27 3.083261 30.15 187.37 2.276598 31.02 187.2 43.96 187.2 3.260383 32.17 186.32 3.290912 32.34 186.45 2 51.33 190.44 RBK 37.8 186.27 3.030281 36.69 185.7 1 56.2 190.25 40.81 186.26 2.200568 38.09 186.11 2 55.46 190.71 Right Pin 62.68 190.25 44.47 187.99 2.535705 40.54 186.18 0 56.2 190.25 44.47 187.99 2.535705 40.54 186.18 0 56.2 190.25 44.47 187.99 2.535705 40.54 186.18 0 56.2 190.25 44.47 187.99 2.535705 40.54 186.18 0 56.2 190.25 44.47 187.99 2.535705 40.54 186.18 0 56.2 190.25 44.47 187.99 2.535705 40.54 186.18 0 56.2 190.25 189.04 186.70 186.19 0 56.2 190.25 189.04 186.17 0 56.28 190.41 Right Pin 61.65 190.21 Right Pin 61.65 190.21 88.94 190.07 1 62.1 190.03 180.07 1 62.1 190.0	
26.03 190.48 0 LBK 16.72 190.34 24.83 190.36 26.52 189.62 1 31.32 187.52 3.789934 25.3 190.45 2.455238 LBK 27.86 189.2 1 34.88 186.22 2.201272 27.61 189.17 1.440451 29.2 188.45 0 36.98 185.56 4.11764 28.71 188.24 1.682409 29.55 187.98 1 41.03 186.27 3.083261 30.15 187.37 2.276598 31.02 187.2 43.96 187.23 3.260383 32.17 186.32 3.299912 32.34 186.45 2 46.86 188.72 4.566732 35.43 185.87 2.394264 34.32 185.91 2.5 185.9	
26.42 190.52 5.43901 22.13 190.63 26.52 189.62 1 31.32 187.52 3.789934 25.3 190.45 2.455238 LBK 27.86 189.2 1 34.88 186.22 2.201272 27.61 189.17 1.440451 29.2 188.45 0 36.98 185.56 4.111764 28.71 188.24 1.682409 29.55 187.98 1 41.03 186.27 3.083261 30.15 187.37 2.276598 31.02 187.2 43.96 187.23 3.260383 32.17 186.32 3.290912 32.34 186.45 2 45.86 188.72 4.566732 35.43 185.87 2.394264 34.32 185.91 2 51.33 190.44 RBK 37.8 186.21 3.030281 36.69 185.7 1 56.2 190.25 Right Pin 62.68 190.71 Right Pin 62.68 190.25 RBH 44.47 187.99 2.535705 40.54 186.18 3 44.47 187.99 2.535705 40.54 186.18 3 45.26 190.41 58.46 190.71 Right Pin 62.68 190.41 58.46 190.71 Right Pin 62.68 190.41 58.46 190.71 Right Pin 64.24 187.99 1.552.1 190.43 15.24 190.41 58.46 190.71 Right Pin 64.64 188.41 54.26 190.41 58.46 190.71 Right Pin 64.62 190.25 187.93 1 55.46 190.25 56.28 190.43 0 RBK 44.12 187.96 15.24 190.41 58.46 190.71 Right Pin 64.62 188.41 54.26 190.31 58.46 190.71 Right Pin 64.62 188.41 58.46 190.71 Right Pin 64.64 189.12 58.49 190.32 64.25 180.33 64.25 190.33 64.25	
31.32 187.52 3.789934 25.3 190.45 2.455238 LBK 27.86 189.2 1 34.88 186.22 2.201272 27.61 198.17 1.440451 29.2 188.45 0 36.98 185.56 4.111764 28.71 188.24 1.682409 29.55 187.98 1 41.03 186.27 3.083261 30.15 187.37 2.276598 31.02 187.2 43.96 187.23 3.260383 32.17 186.32 3.290912 32.34 186.45 2 46.86 188.72 4.566732 35.43 185.87 2.394264 34.32 186.45 2 51.33 190.44 RBK 37.8 186.21 3.030281 36.69 185.7 1 56.2 190.25 40.81 186.56 2.200568 38.09 186.11 2 58.46 190.71 Right Pin 42.86 187.36 1.728872 40.41 186.17 0 62.68 190.25 44.47 187.99 2.535705 40.54 186.18 3 46.74 189.12 3.572916 43.99 187.02 0 46.74 189.12 3.572916 43.99 187.02 0 46.74 199.12 3.572916 43.99 187.02 0 47.76 189.19 2 49.99 190.07 1 52.1 190.43 62.4 188.41 61.65 190.21 47.76 189.19 2 49.99 190.07 1 52.1 190.43 62.4 188.41 61.65 190.21 47.76 189.19 2 49.99 190.07 1 52.1 190.43 62.4 188.41 61.65 190.21 58.49 190.32 64.25 190.25	
34.88 186.22 2.201272	
36.98 185.56 4.111764 28.71 188.24 1.682409 29.55 187.98 1 41.03 186.27 3.083261 30.15 187.37 2.276598 31.02 187.2 43.96 187.23 3.260383 32.17 186.32 3.290912 32.34 186.45 2 46.86 188.72 4.566732 35.43 185.87 2.394264 34.32 185.91 2 51.33 190.44 RBK 37.8 186.21 3.030281 36.69 185.7 1 56.2 190.25 40.81 186.56 2.200568 38.09 186.11 2 58.46 190.71 Right Pin 62.68 190.25 46.44 189.12 3.572916 43.99 187.02 0 46.74 189.12 3.572916 43.99 187.02 0 50.28 190.43 0 RBK 44.12 187.46 1 58.46 190.71 Right Pin 61.65 190.21 46.24 188.41 61.65 190.21 49.99 190.07 1 52.1 190.43 54.26 190.21 49.99 190.07 1 52.1 190.43 54.26 190.21 58.49 190.32 64.25 190.3 64.25 190	
41.03 186.27 3.083261 30.15 187.37 2.276598 31.02 187.2 43.96 187.23 3.260383 32.17 186.32 3.290912 32.34 186.45 2 3.24 186.45 2	
43.96 187.23 3.260383	
51.33 190.44 RBK 56.2 190.25 40.81 186.56 2.200568 38.09 185.7 1 58.46 190.71 Right Pin 62.68 190.25 44.47 187.99 2.535705 40.54 186.18 3 46.74 189.12 3.572916 43.99 187.02 0 58.46 190.71 Right Pin 61.65 190.21 Right Pin 61.65 190.21 47.76 189.19 2 49.99 190.07 1 62.68 190.43 0 RBK 44.12 187.46 1 61.65 190.21 47.76 189.19 2 49.99 190.07 1 62.68 190.43 0 RBK 45.25 187.93 1 61.65 190.21 47.76 189.19 2 49.99 190.07 1 62.68 190.48 187.08 187.08 190.28 187.0	2.052316
56.2 190.25	2.379286
58.46 190.71 Right Pin 62.68 190.25 44.47 187.99 2.535705 40.54 186.17 0 46.74 187.19 2.535705 40.54 186.18 3 50.28 190.43 0 RBK 44.12 187.46 1 54.26 190.41 Right Pin 61.65 190.21 45.25 187.93 1 61.65 190.21 47.76 189.19 2 49.99 190.07 1 52.1 190.43 54.6 190.2 58.49 190.32 64.25 190.03 68.06 190.73	1.458801
62.68 190.25 44.47 187.99 2.535705 40.54 186.18 3 46.74 189.12 3.572916 43.99 187.02 0 50.28 190.41 45.25 187.93 1 58.46 190.71 Right Pin 61.65 190.21 47.76 189.19 2 49.99 190.07 1 52.1 190.43 54.6 190.2 49.99 190.07 3 54.6 190.2 58.49 190.32 64.25 190.03 68.06 190.73	2.320776
46.74 189.12 3.572916 43.99 187.02 0 50.28 190.43 0 RBK 54.26 190.41 Right Pin 61.65 190.21 Right Pin 61.65 190.21 47.76 189.19 2 49.99 190.07 1 52.1 190.43 54.6 190.2 1 58.49 190.32 64.25 190.03 68.06 190.73	0.130384
50.28 190.43 0 RBK 44.12 187.46 1 54.26 190.41 45.25 187.93 1 58.46 190.71 Right Pin 61.65 190.21 47.76 189.19 2 49.99 190.07 1 52.1 190.43 54.6 190.2 58.49 190.32 64.25 190.03 68.06 190.73	
54.26 190.41 45.25 187.93 1 58.46 190.71 Right Pin 61.65 190.21 46.24 188.41 47.76 189.19 2 49.99 190.07 1 52.1 190.43 54.6 190.2 58.49 190.32 64.25 190.03 68.06 190.73	
58.46 190.71 Right Pin 61.65 190.21 46.24 188.41 47.76 189.19 2 49.99 190.07 1. 52.1 190.43 54.6 190.2 58.49 190.32 64.25 190.03 68.06 190.73	
61.65 190.21 47.76 189.19 2 49.99 190.07 1 52.1 190.43 54.6 190.2 58.49 190.32 64.25 190.03 68.06 190.73	
49.99 190.07 1 52.1 190.43 54.6 190.2 58.49 190.32 64.25 190.03 68.06 190.73	1.70845
52.1 190.43 54.6 190.2 58.49 190.32 64.25 190.03 68.06 190.73	
54.6 190.2 58.49 190.32 64.25 190.03 68.06 190.73	
58.49 190.32 64.25 190.03 68.06 190.73	
64.25 190.03 68.06 190.73	
68.06 190.73	
70.27 192.07 73.77 192.89	

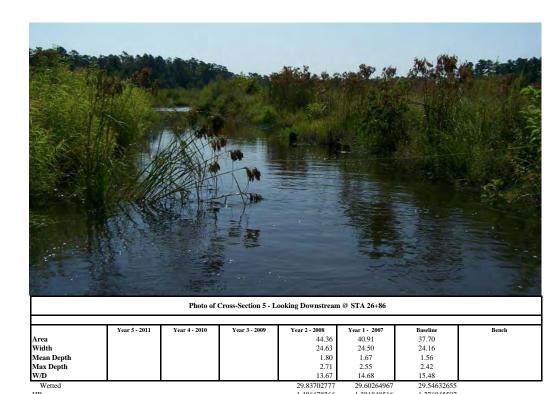



Project Nam Cross Section Feature Date Crew	1 As Built - 07/0	Overhills Cross Section Pool 04/08, Year 1 - 1 elspach, Jean, G	1/09/08, Year		allestero															
	Year 5 - 2011 2011 Survey			Year 4 - 2010 2010 Survey	•		Year 3 - 2009 2009 Survey			Year 2 2008 S				Year 1 2007 S				Base		
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation		Notes	Station	Elevation		Notes	Station	Elevation		Notes
									9.58	189.38			3.3	190.38			4.56	190.23		
									13.16	189.5		Left Pin	8.33	189.53			6.9	189.82		
									14.81	189			12.7	189.11			13.65	189.51		Left Pin
									19.75	189.07	0.45500	LDIZ	12.8	189.54		Left Pin	16.04	189.01	4.074045	LDIZ
									22.42 25.82	189.6	3.45532 2.518134		17.6 22.12	189.03 189.57	2.433496	LBK	22.49 24.16		1.671915 1.413966	LBK
									28.09		2.998966		24.71		1.462942	LDK	25.49		0.718679	
									30.26		2.663269		24.71		1.735281		25.49	188.61	0.710079	
									32.87		3.165454		27.56		2.140093		26.85	188.28	1.784433	
									35.87		3.181352		29.26	186.52	3.05041		28.44	187.47		
									38.76		2.769296		31.67		0.900278		29.87	186.93	1.49693	
									41.27		3.927433		32.55		1.236851		30.45		1.445061	
									45.66	189.8		RBK	33.78		2.177062		31.66		2.742353	
									50.32	189.48			35.78		2.235106		34.28		0.779359	
									53.76	189.36			37.72	186.94	1.892749		34.93	186	1.855694	
									54.37	189.85		Right Pin	39.57	187.34	0.878635		36.53	186.94	1.723514	
									60.03	189.23			40.23	187.92	0.49163		38.16			
													40.72		4.345179		39.43			
													45.38	189.82		RBK	40.48		0.809506	
													50.51	189.52			41.2		1.765701	
													54.36	189.84		Right Pin	42.91		0.948947	
													59.59	189.33			43.74	189.32	1.05434	
																	46.29	189.89		RBK
																	48.93	189.71		
																	51.53	189.34		D' L. P'
																	54.39	189.81		Right Pin
																	57.19 62.87	189.28 189.3		
																	02.07	109.3		

Overhills Cross Section #2 (Pool) Floodprone Area (approx.) Elevation (feet) Bankfull Elev. (approx.) **Distance** (feet) **→** Baseline **→** Year 1 - 2007 **→** Year 2 - 2008

	Year 5 - 2011 2011 Survey			Year 4 - 2010 2010 Survey)		Year 3 - 2009 2009 Survey			Year 2 2008 S				Year 1 2007 S				Base Surv		
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station 5.05	Elevation 188.88		Notes	Station 4.06	Elevation 188.79		Notes	Station 4.48	Elevation 188.83		Notes
									8.5	189.29		Left Pin	8.41	189.3		Left Pin	8.32	189.36		Left P
									8.84	188.9		LCIT III	9.18	188.93		Lett I III	15.78	189.1		Lett
									12.56	188.92			13.52	189.01			19.61	189.1	1.080849	
									16.71	189.22	0		18	189.33	0		20.74		1.508675	LB
									19.38		2.239656		19.99		3.037344	LBK	22.18		1.525025	
									22.04		3.073906		22.85		1.077868		23.54	187.47	0.95	
									24.87 27.04		2.181124 4.935393		23.82 25.46		1.767824 2.031576		24.3 26.31		2.026746 2.180367	
									31.94		3.524897		27.49		2.267973		28.49		1.267754	
									35.34		2.850474		29.75		3.101951		29.75		2.262211	
									37.8		1.287664		32.85		1.969772		32.01	186.44	1.93352	
									40.02	189.58	0		34.65		3.812034		33.82		1.491643	
									43.54	189.09	0		38.11		0.295469		35.19		1.473296	
									47	189.32		Right Pin	40.08	189.58	0	DDIZ	36.54		1.557081	ъ.
									47.33 51.35	188.95 188.93			41.78 46.9	189.15 188.95		RBK	37.91 39.63	189.04 189.57	0	RI
									51.35	100.93			46.9	189.33		Right Pin	41.31	189.19	0	
													53.96	188.9		reight I in	43.25	189.07	0	
																	46.88	189.32		Rigl
																	56.34	188.86		




Cross Section Feature Date Crew	on Cross Secti Riffle As Built - 07/04/08, Year 1 As Built - Bidelspach, Jean Year 5 - 2011	- 11/09/08, Ye		Ballestero		Year 3 - 2009			Year 2	- 2008			Year 1	- 2007			Base	eline	
	2011 Survey		2010 Survey			2009 Survey			2008 S				2007 S				Sur		
Station	Elevation Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation		Notes	Station	Elevation		Notes	Station	Elevation		Notes
								2.27	189.11		Left Pin	2.24	189.15		Left Pin	2.04			Left Pin
								2.48 8.08	188.65	2.364291		2.87 7.53	188.66 188.67			2.74 7.31	188.58 188.61		
								12.07		2.102128	LBK	10.56	188.99	0	LBK	9.06			
								14.15		1.828879		13.14		4.266192		12.06		4.449883	LBK
								15.97		1.761391		17.08	187.18			16.45		2.074247	
								17.64		2.044138		19.34		1.648423		18.45		1.749771	
								19.05	185.63	1.835347		19.81	185.16	2.223196		20.09	186.27	2.42062	
								20.43	184.42	0.127279		21.82	184.21	1.501466		22.22	185.12	3.678872	
								20.52		2.517161		22.82	183.09	0.87367		25.87		2.288165	
								22.83		2.410021		23.69	183.01	1.630859		28.01			
								25.24		3.417206		25.3	183.27	1.64478		28.79			
								28.27		2.750891		26.72		0.700071		30.5		1.898736	
								29.7		3.258481		27.42	184.09			32.24		3.335461	DDIZ
								32.91 35.98		3.238179 3.784508		27.96 28.85	184.89	2.23486 4.180765		35.46 39.85		4.413004	RBK
								39.74	188.43	3.704300	KDK	32.83		2.762481		43.15			Right Pin
								42.81	188.86		Right Pin	35.51		6.276854	RBK	40.10	100.0		Kight I iii
								12.01	100.00		11151111111	41.76	188.31	0.27 000 1	11111				
												42.92	188.89		Right Pin				

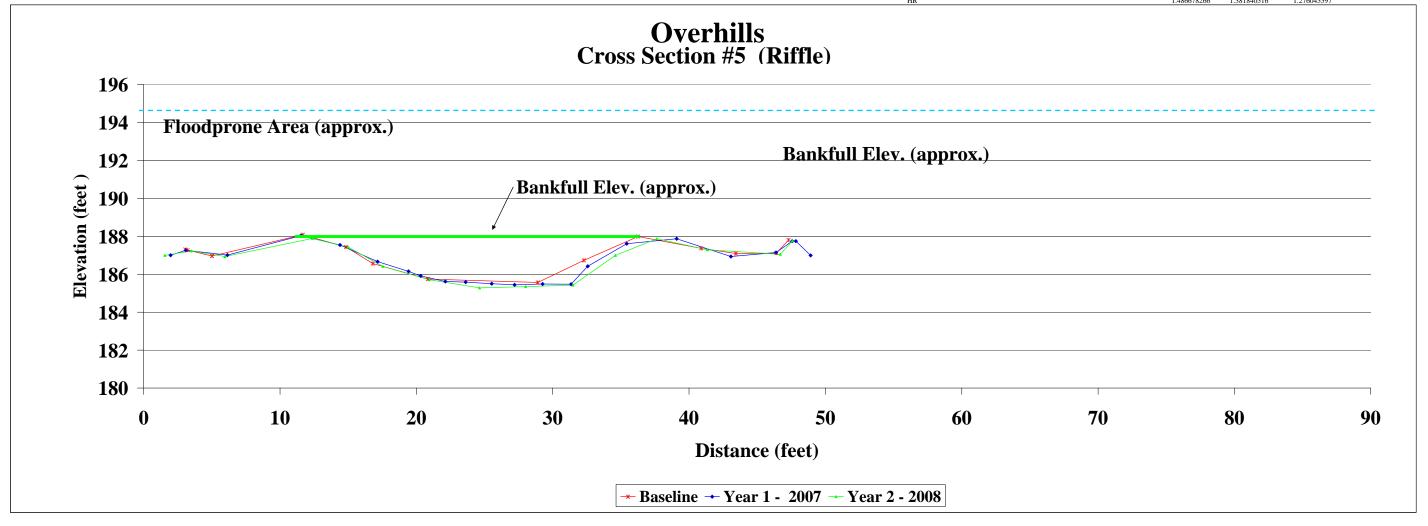
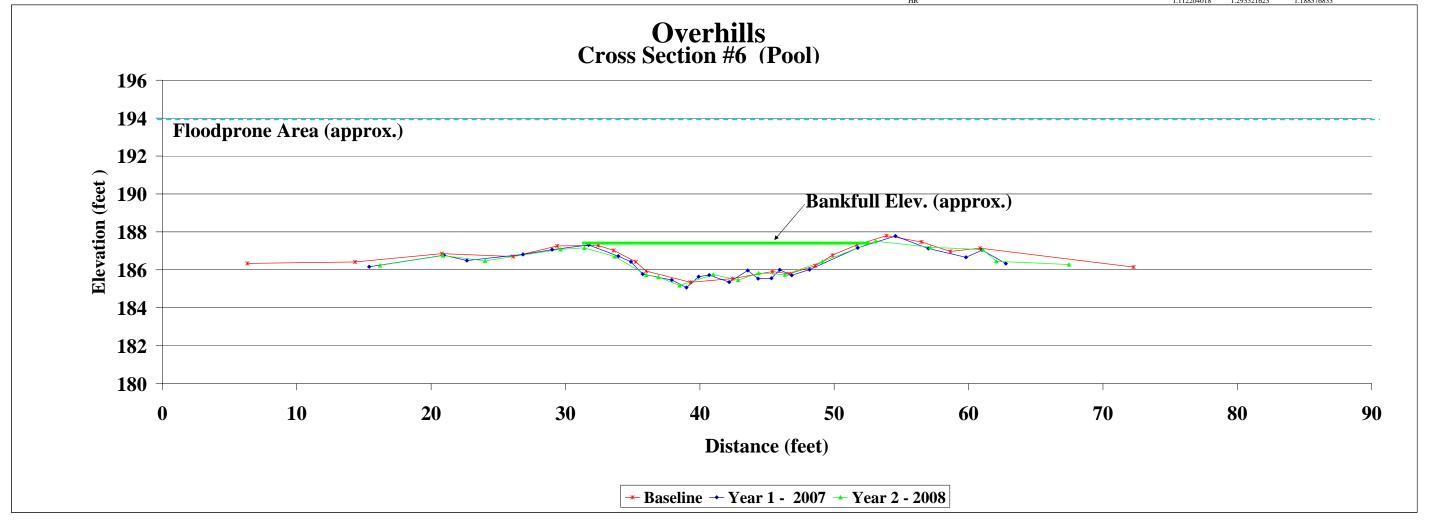
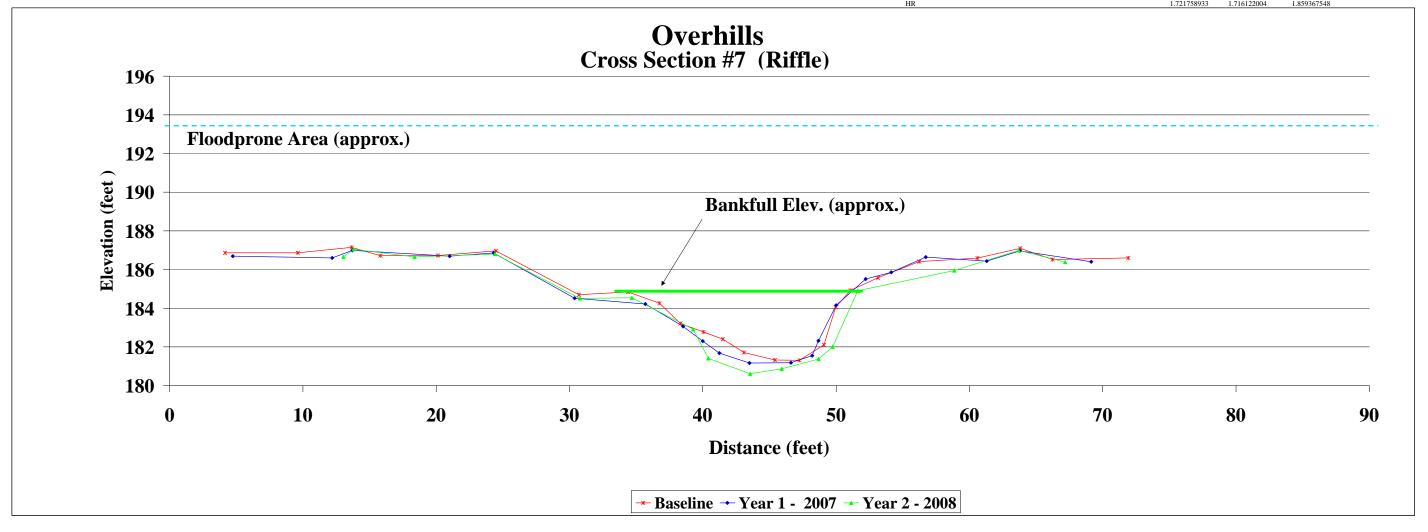


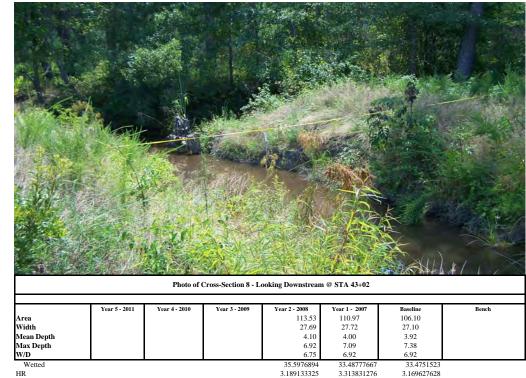
		Photo of	f Cross-Section 4 -	Looking Upstream	@ STA 20+93		
	Year 5 - 2011	Year 4 - 2010	Year 3 - 2009	Year 2 - 2008	Year 1 - 2007	Baseline	Bench
Area				64.86	59.60	49.19	
Vidth				23.11	22.25	23.19	
Mean Depth				2.81	2.68	2.12	
Max Depth				5.59	5.91	4.26	
W/D				8.23	8.31	10.93	
Wetted				33.43990054	33.21124613	29.67220553	

	Year 5 - 2011 2011 Survey		Year 4 - 2010 2010 Survey		Year 3 - 2009 2009 Survey			Year 2 2008 S				Year 1 2007 S				Base Surv		
Station	Elevation Notes	Station	Elevation	Station	Elevation	Notes	Station	Elevation		Notes	Station	Elevation		Notes	Station	Elevation		Notes
							1.55	186.99			1.97	187			3.05	187.3		Left Pin
							3.5	187.23		Left Pin	3.09	187.26		Left Pin	3.21	187.27		
							5.95	186.93			6.14	187.01			5.01	186.96		
							12.38		2.660075	LBK	11.52	188.03	0.000005	LBK	11.66		2.796339	LBK
							15 17.55		2.746434 3.471311		14.4 17.16	187.54 186.66	2.896895 2.31683		14.84 16.8		2.144411 4.122378	
							20.95		3.705037		19.42	186.15	0.93145		20.84	185.74	8.07179	
							24.63		3.380725		20.32		1.823211		28.91		3.564057	
							28.01		3.470706		22.12		1.490537		32.28		4.174686	
							31.48	185.42			23.61		1.921666		36.26		4.672665	RBK
							34.6		3.164806		25.53		1.671077		40.89	187.36		
							37.64	187.87	3.745184	RBK	27.2	185.44	2.060388		43.43	187.09		
							41.34	187.29			29.26		2.080024		46.4	187.11		Right Pin
							46.7	187.05		Right Pin	31.34		1.554156		47.3	187.8		
							47.58	187.76			32.57		3.097693					
											35.43		3.669223					
											39.09		4.089499	RBK				
											43.07 46.38	186.93 187.14		Right Pin				
											46.36	187.74		Kight Pin				
											47.83	187.74						
											48.91	186.99						
											10.01	100.00						



Feature Date Crew		Pool 04/08, Year 1 - elspach, Jean, O			Ballestero															
	Year 5 - 2011			Year 4 - 201			Year 3 - 2009			Year 2				Year 1				Base		
	2011 Survey			2010 Survey			2009 Survey			2008 St				2007 S				Surv		
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes		Elevation		Notes		Elevation		Notes	Station	Elevation		Notes
									16.19	186.24	0		15.39	186.16	0		6.32	186.34	0	
									20.88 24.02	186.75 186.47	0	Left Pin	20.95 22.67	186.77 186.49	0	Left Pin	14.35	186.41 186.85	0	
									29.63	187.08	0		26.84	186.81	0		20.81 26.11	186.7	0	Left Pin
									31.41		2.296541		20.84	187.06	0		29.39	187.26	0	
									33.66		2.551568		31.73	187.31	0	LBK	32.45		1.169273	LBK
									36.02		0.906697		33.93		0.986712		33.59	187.02	1.74631	
									36.92		1.633218		34.87	186.42			35.23		0.921141	
									38.49		2.566398		35.74		2.192031		36.01		3.342484	
									40.99		1.882472		37.91	185.46	1.17047		39.3		3.146363	
									42.85	185.46	1.56205		39.01	185.06	1.070701		42.44	185.54	2.983035	
									44.37	185.82	1.971243		39.91	185.64	0.784092		45.4	185.91	1.245793	
									46.34		2.883765		40.69		1.535252		46.64			
									49.14		3.197541		42.18		1.512878		48.59		1.387984	
									53.07		1.151024		43.56	185.97	0.890674		49.86		1.771892	
									57.15	187.19	0		44.34		0.990051		51.69	187.32	0	RBK
									61.07	187.06		Right Pin	45.33		0.766094		53.89	187.8	0	
									62.07 67.47	186.45 186.28	0		45.95 46.84	186 185.71	0.936056 1.353662		56.5	187.47 186.97	0	
									67.47	100.20	U		48.16	186.01	3.769695		58.64 60.87	187.14		Right Pin
													51.75		0.556952	RBK	72.27	186.14	0	-
													54.56	187.78	0.550952	KDK	12.21	100.14	U	
													57.01	187.12	0					
													59.8	186.66	0					
													61.01	187.04		Right Pin				
													62.77	186.33	0					
													1							
			ĺ						ĺ				ĺ				ĺ			


		Photo of	Cross-Section 6 - L	ooking Downstrean	n @ STA 31+56		
	Year 5 - 2011	Year 4 - 2010	Year 3 - 2009	Year 2 - 2008	Year 1 - 2007	Baseline	Bench
Area				25.14	25.35	23.43	
Width				19.23	19.24	19.06	
Mean Depth				1.31	1.32	1.23	
Max Depth				2.11	2.21	1.94	
W/D				14.71	14.59	15.51	
Wetted				22.60251686	19.60132026	19.7089936	
LID.				1 112204019	1 202521622	1 100576022	


	Year 5 - 2011 2011 Survey		Year 4 - 2010 2010 Survey			Year 3 - 2009 2009 Survey			Year 2 2008 S				Year 1 -				Base Surv		
Station	Elevation Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation		Notes	Station	Elevation		Notes	Station	Elevation		Notes
								13.04	186.66	0		4.74	186.69	0		4.15	186.87	0	
								13.8	187.05	0		12.19	186.6	0		9.61	186.87	0	
								18.38	186.65	0		13.71	186.99		Left Pin	13.66	187.15	0	Left P
								24.4	186.8		Left Pin	21.01	186.69	0		15.81	186.72	0	
								30.78				24.31	186.86	0		20.13	186.73	0	
								34.68 39.27		4.870832 1.884038	LBK	30.38		5.318468 3.058513	LBK	24.47	186.97 184.7	0	
								40.41		3.240309		35.69 38.52		1.654841		30.71 34.39		2.430226	LBK
								43.55	180.61	2.39416		39.99		1.395314		36.75		1.888756	LDI
								45.93		2.804924		41.24	181.68	2.31683		38.32	183.21	1.79477	
								48.69		1.229675		43.5		3.110016		40.06			
								49.74	182.01	3.372645		46.61		1.632483		41.51	182.4	1.714934	
								51.62	184.91	0	RBK	48.2	181.55	0.902109		43.08	181.71	2.362414	
								58.86	185.95	0		48.67		2.262256		45.41			
								63.69	186.99		Right Pin	50		1.316549		47.24		2.002424	
								67.18	186.39	0		52.21	185.51	0	RBK	49.08		2.143502	
												54.14	185.86	0		49.97	184.05	1.2735	-
												56.73 61.3	186.64 186.44	0		51.07 53.14	184.92 185.58	0	RBŁ
												63.79	186.97	-	Right Pin	56.23	186.41	0	
												69.14	186.4	0	Right I in	60.6	186.59	0	
												03.14	100.4	· ·		63.81	187.1		Right l
																66.24	186.52	0	
																71.92	186.6	0	

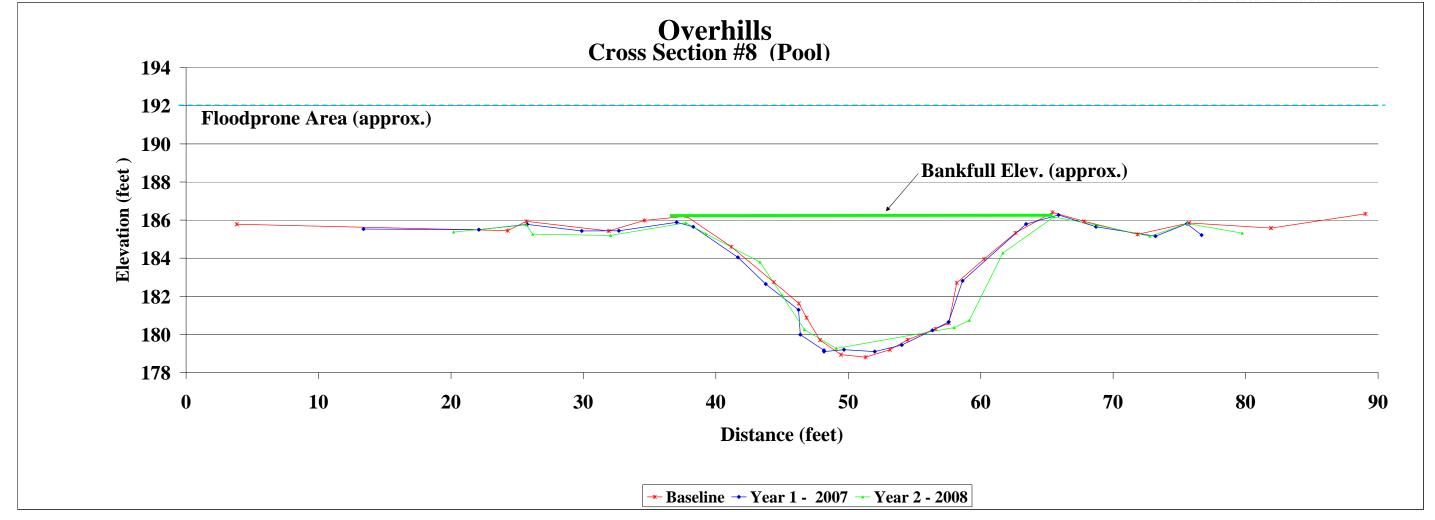
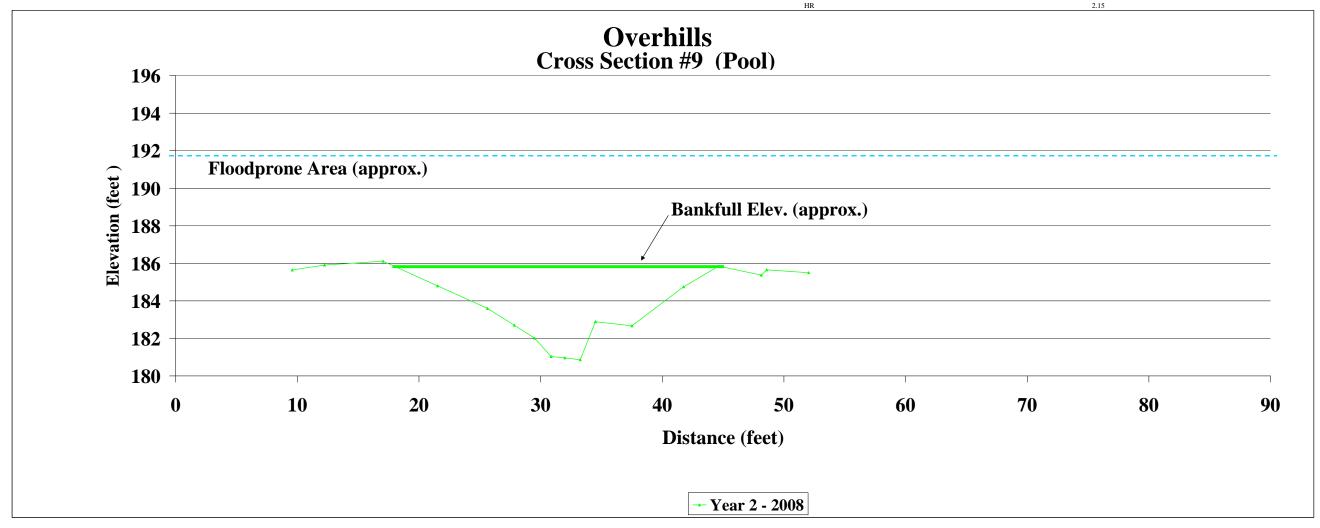


Photo of Cross-Section 7 - Looking Downstream @ STA 37+24											
	Year 5 - 2011	Year 4 - 2010	Year 3 - 2009	Year 2 - 2008	Year 1 - 2007	Baseline	Bench				
Area				40.80	39.41	35.21					
Width				16.68	16.68	16.54					
Mean Depth				2.45	2.36	2.13					
Max Depth				4.23	3.67	3.53					
W/D				6.82	7.06	7.77					
Wetted				23.69669715	22.96737735	18.93701638					

		etion 8 1 - 11/09/08, Yea		illestero				Ī											
	Year 5 - 2011		Year 4 - 2010			Year 3 - 2009			Year 2				Year 1				Base		
	2011 Survey		2010 Survey			2009 Survey			2008 S				2007 S				Surv		
Station	Elevation Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation		Notes	Station	Elevation		Notes	Station	Elevation		Notes
								20.2	185.37			13.4	185.53			3.83	185.78		
								25.7	185.75		Left Pin	22.11	185.5		I 0 D:	24.28	185.45		I O D'
								26.17 32.05	185.26 185.19			25.75 29.88	185.77 185.43		Left Pin	25.7 31.91	185.93 185.43		Left Pin
								37.73		1.614001	LBK	32.68	185.44			34.62	185.98		
								39.24		4.356386		37.04	185.88	1.28082	LBK	37.77		3.748734	LRK
								43.33		2.397603		38.3		3.734836	LDI	41.17		3.701297	LDIL
								44.99		2.483163		41.67		2.523886		44.37		2.200477	
								46.69		2.583118		43.77		2.814853		46.27		0.948103	
								49.08		8.976425		46.24	181.29	1.307517		46.85	180.88	1.553222	
								57.99	180.36	1.211156		46.38	179.99	1.959796		47.86	179.7	1.753283	
								59.14	180.74	4.343017		48.16	179.17	0.070711		49.44	178.94	1.874513	
								61.67		4.302278		48.17	179.1	1.50333		51.31		1.871096	
								65.53	186.17	3.33054		49.67		2.322154		53.14		1.437359	
								68.83	185.72			51.99	179.1	2.078004		54.48		2.175983	RBK
								72.79	185.15			54.04		2.447611	RBK	56.58	180.29	1.053613	
								75.6	185.82		Right Pin	56.36		1.284134		57.59	180.59	2.20327	
								79.74	185.31			57.57		2.406076		58.19	182.71	2.41814	
												58.63 63.42		5.641321 2.112729		60.26 62.63	183.96 185.33	2.737481 2.419	
												65.87	186.27	2.112129		65.42	186.4	1.379582	
1												68.7	185.65			67.81	185.93	1.319302	
1												73.19	185.15			71.84	185.25		
1												75.56	185.81		Right Pin	75.73	185.85		Right Pin
1												76.68	185.21			81.92	185.58		
																89.04	186.33	0	



tation	2011 Survey Elevation	Notes		2010 Survey		Year 3 - 2009 2009 Survey			Year 2 - 2008 2008 Survey					Year 1 - 2007 2007 Survey		Baseline Survey	
			Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation		Notes	Station		Station	Elevation Note	
									9.58	185.64							
									12.23	185.91		Left Pin					
									17.05	186.11	0	BKF					
									21.52 25.62		4.272002 2.386231						
									27.83		1.806931						
									29.5		1.676305						
									30.86		1.132166						
									31.99		1.273931						
									33.26		2.37876						
									34.5		3.008056						
									37.5		4.731691						
									41.75	184.75	3.101612						
									44.65	185.85	3.522854	BKF					
									48.14	185.37							
									48.58	185.65		Right Pin					
									52.04	185.5							

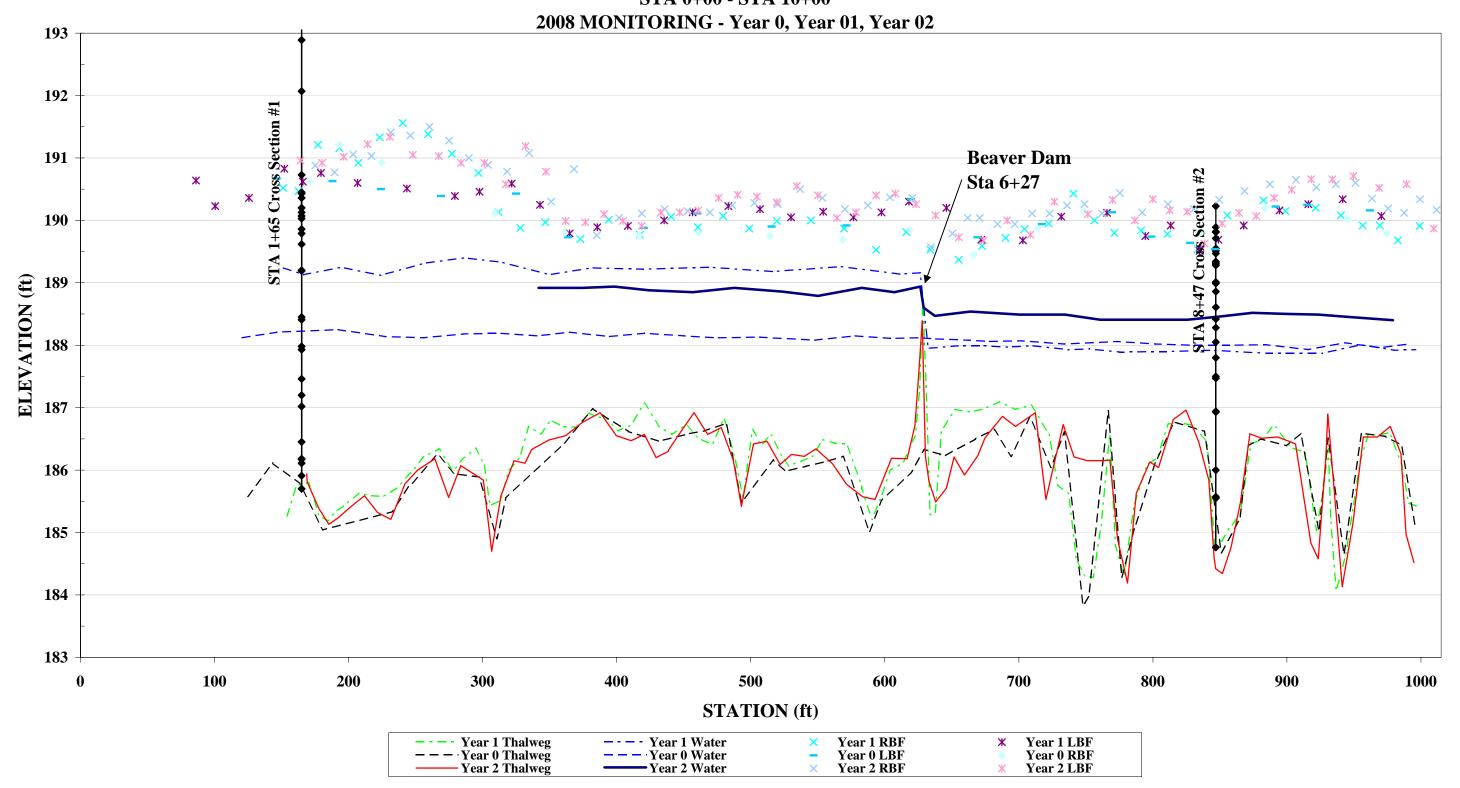
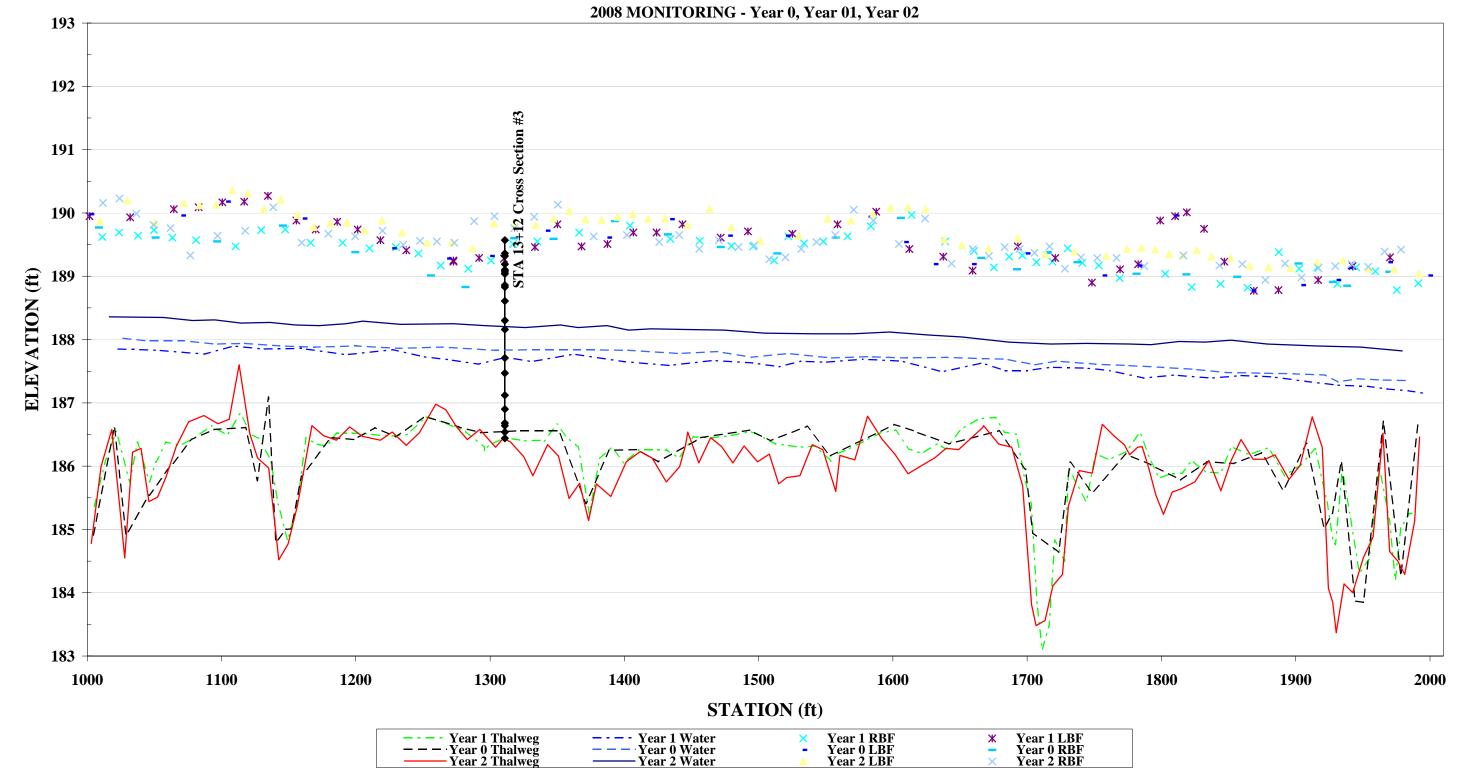
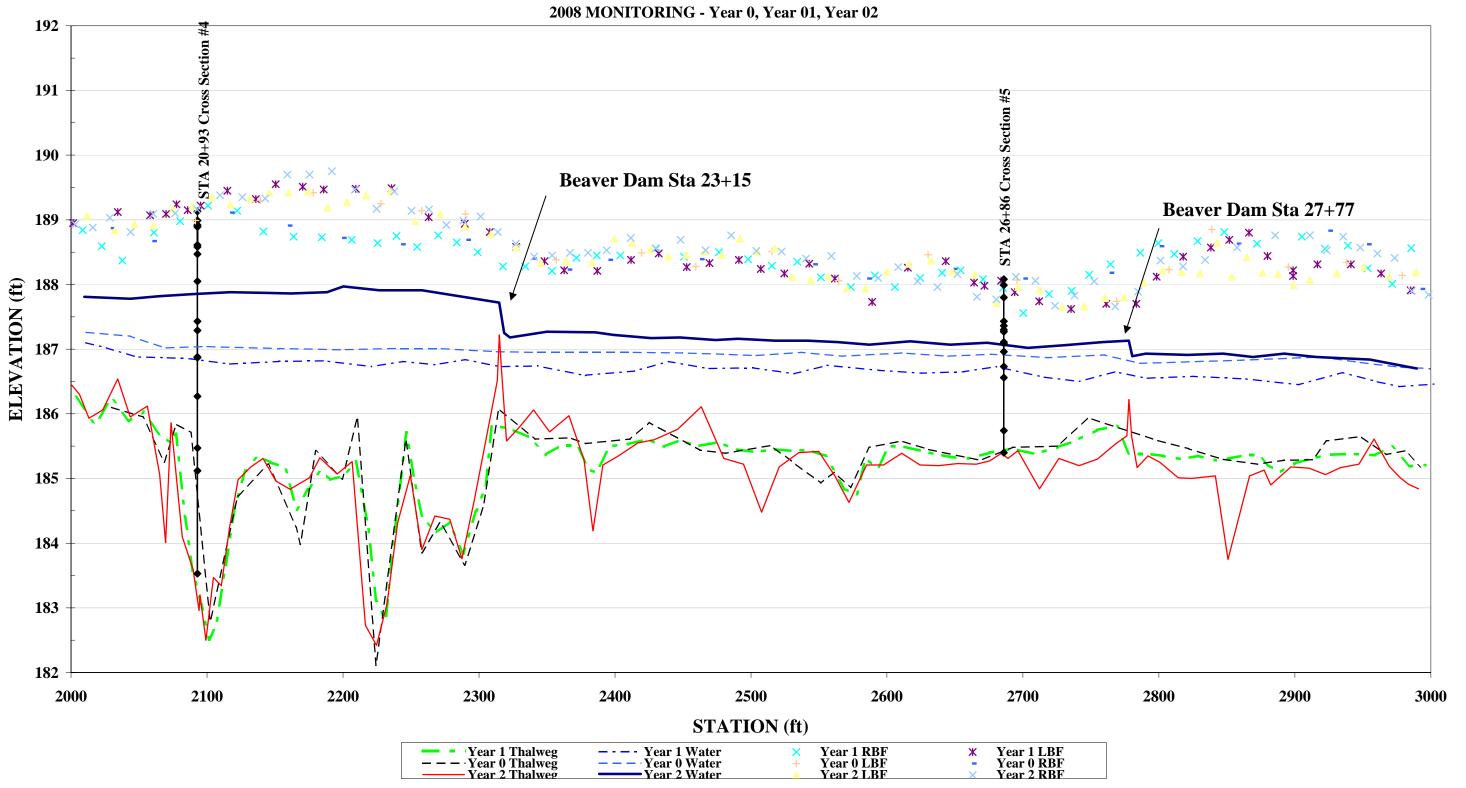
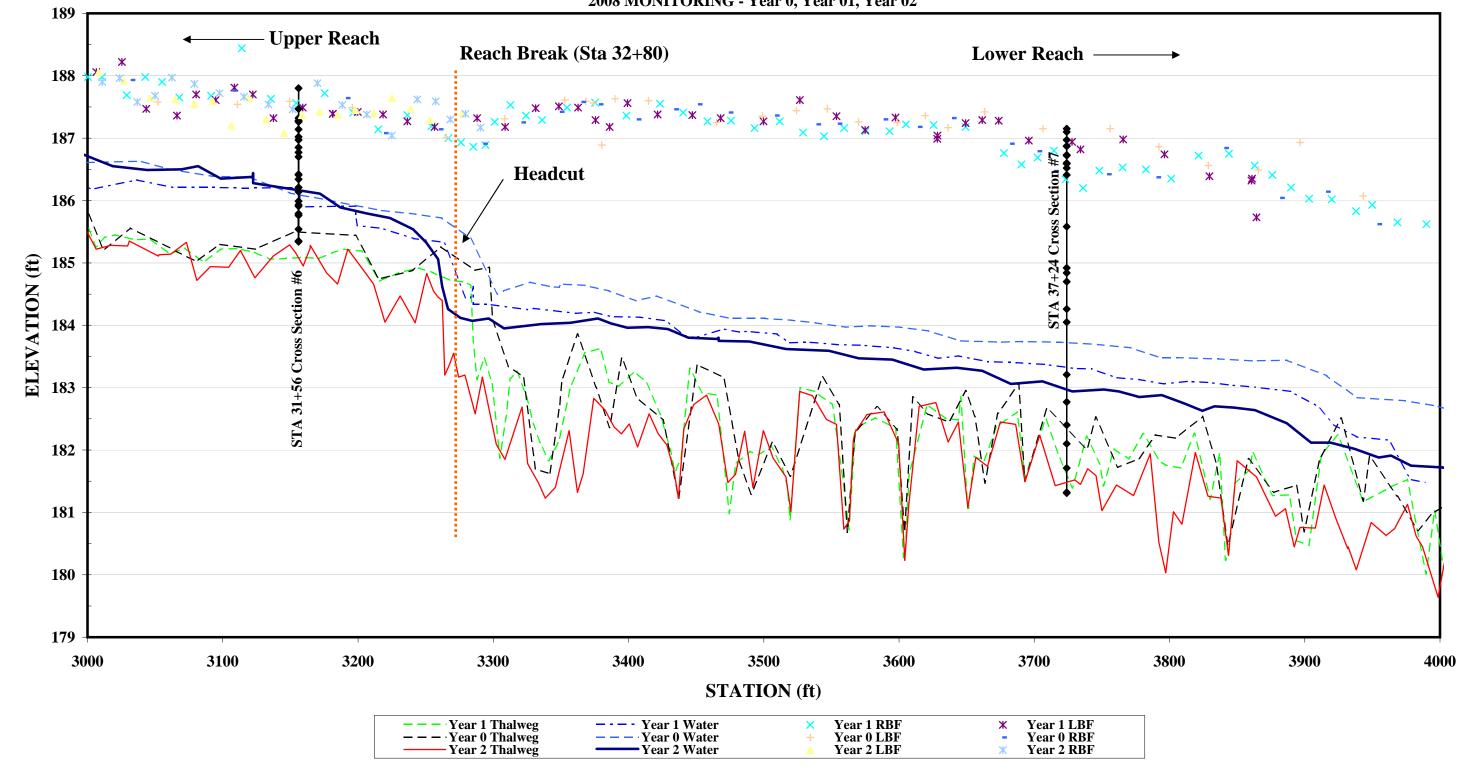


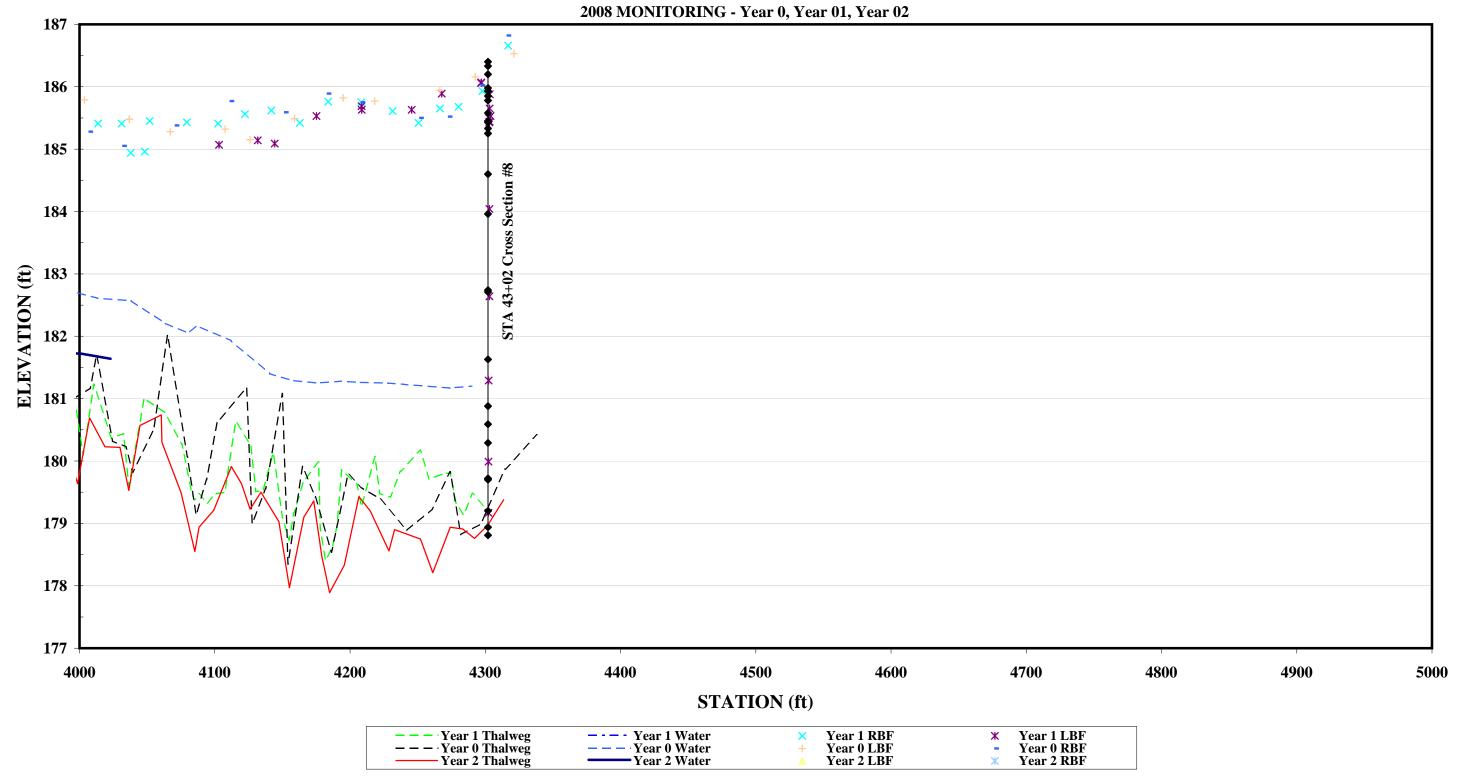
Photo of Cross-Section 9 - Looking Downstream @ STA 39+30												
	Year 5 - 2011	Year 4 - 2010	Year 3 - 2009	Year 2 - 2008	Year 1 - 2007	Baseline	Bench					
Area				62.93								
Width				26.71								
Mean Depth				2.36								
Max Depth				4.99								
W/D				11.34								
Wet				29.29054026								

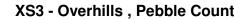


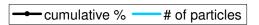
B.7 LONGITUDINAL PLOTS

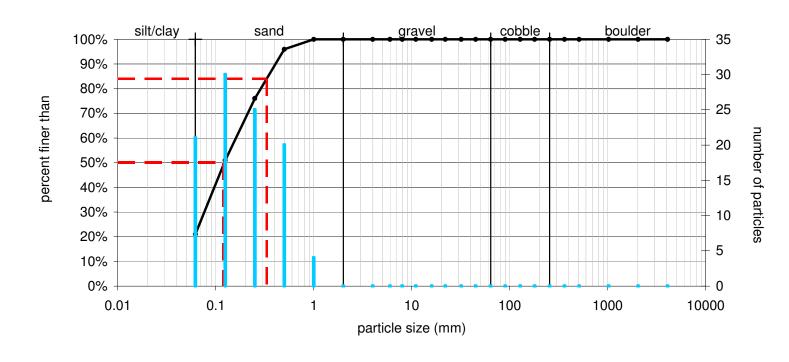

Overhills Profile Upper Reach STA 0+00 - STA 10+00


Overhills Profile
Upper Reach
STA 10+00 - STA 20+00
8 MONITORING - Year 0 Year 01 Year

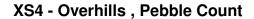

Overhills Profile Upper Reach STA 20+00 - STA 30+00

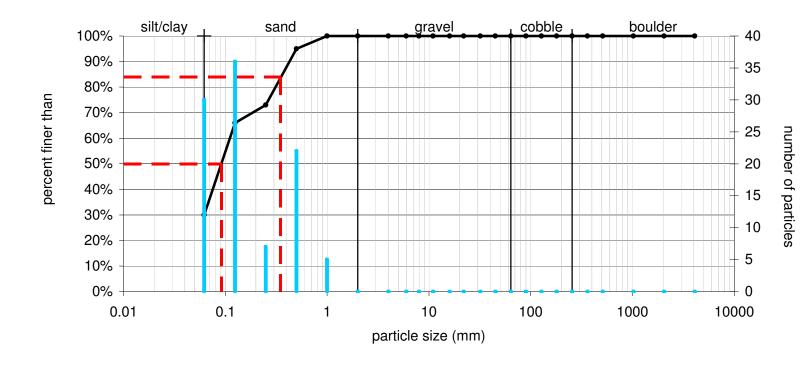



Overhills Profile Upper & Lower Reaches STA 30+00 - STA 40+00 2008 MONITORING - Year 0, Year 01, Year 02



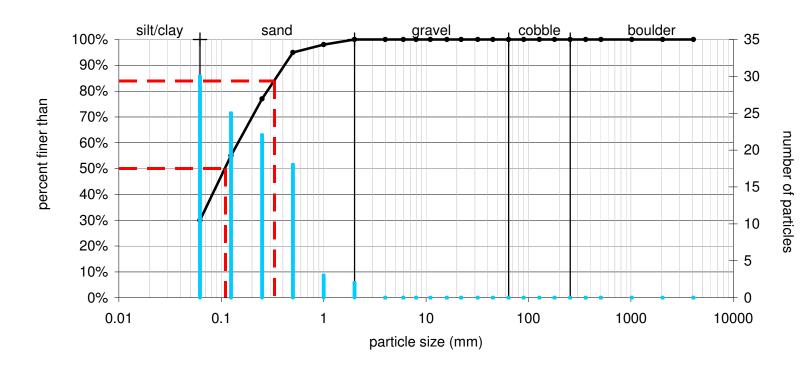
Overhills Profile Lower Reach STA 40+00 - STA 50+00




Size (mm)			
D16 0.06			
D35	0.086		
D50	0.12		
D65	0.18		
D84	0.33		
D95	0.48		

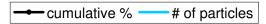
Size Distribution		
mean	0.1	
dispersion	2.3	
skewness	0.09	
0.00		

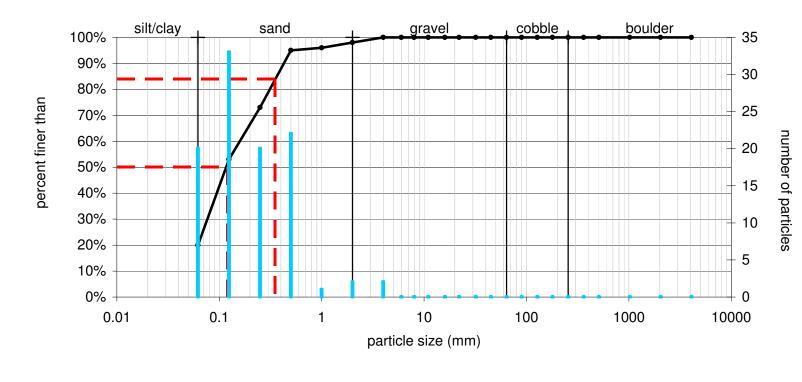
Type		
silt/clay	21%	_
sand	79%	
gravel	0%	
cobble	0%	
boulder	0%	


Size (mm)		
D16	0.062	
D35	0.068	
D50	0.092	
D65	0.12	
D84	0.35	
D95	0.5	

Size Distribution	
mean 0.1	
dispersion	2.6
skewness	0.24

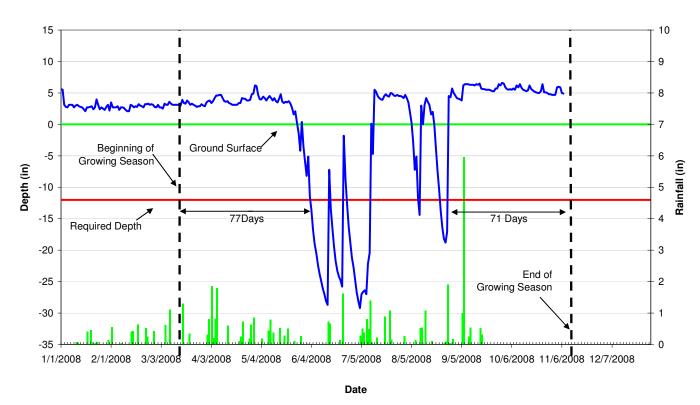
Туре	
30%	
70%	
0%	
0%	
0%	
	30% 70% 0% 0%



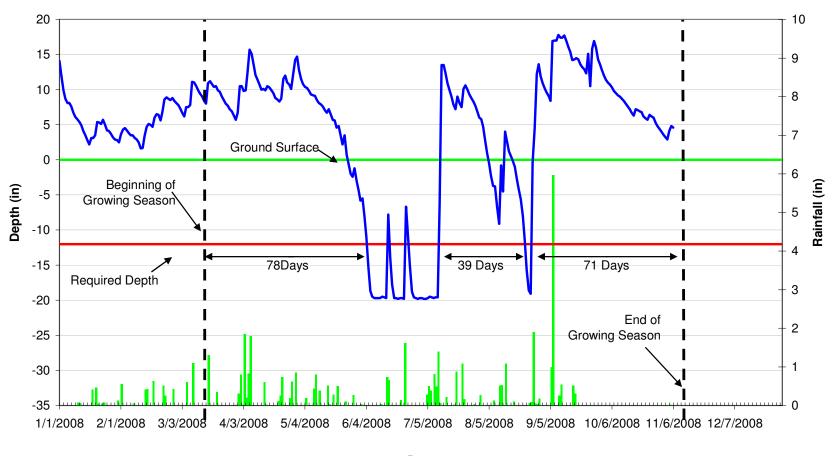

Size (mm)			
D16 0.062			
	D35	0.071	
	D50	0.11	
	D65	0.17	
	D84	0.33	
	D95	0.5	

Size Distribution	
0.1	
2.4	
0.13	

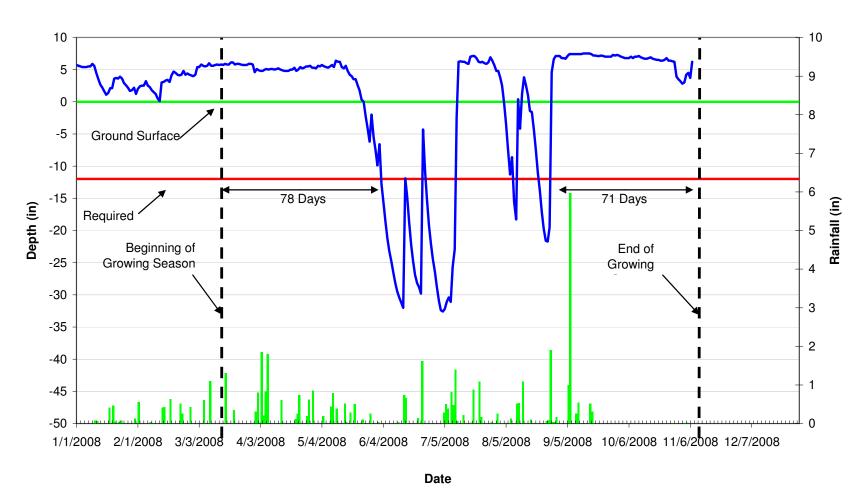
	Туре	
silt/clay	30%	
sand	70%	
gravel	0%	
cobble	0%	
boulder	0%	

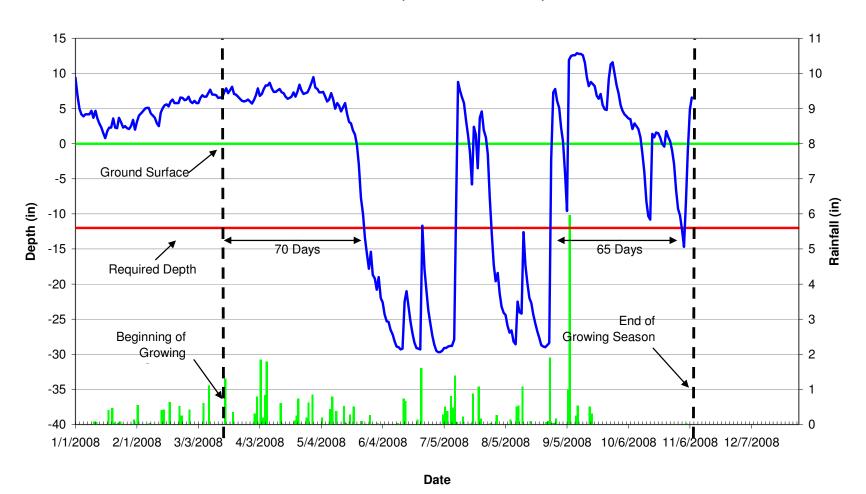

Size (mm)			
D16 0.062			
D35	0.085		
D50	0.12		
D65	0.19		
D84	0.35		
D95	0.5		

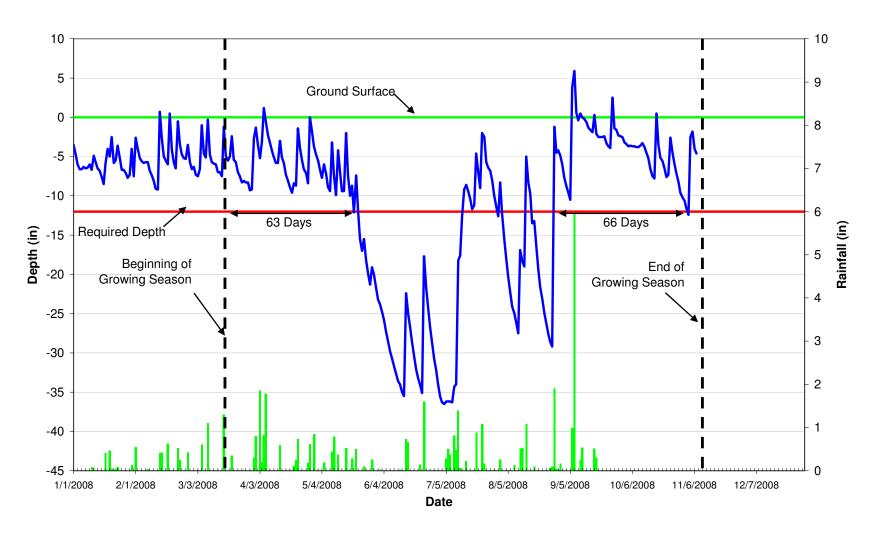
	Size Distribution		
mean		0.1	
	dispersion	2.4	
	skewness	0.10	

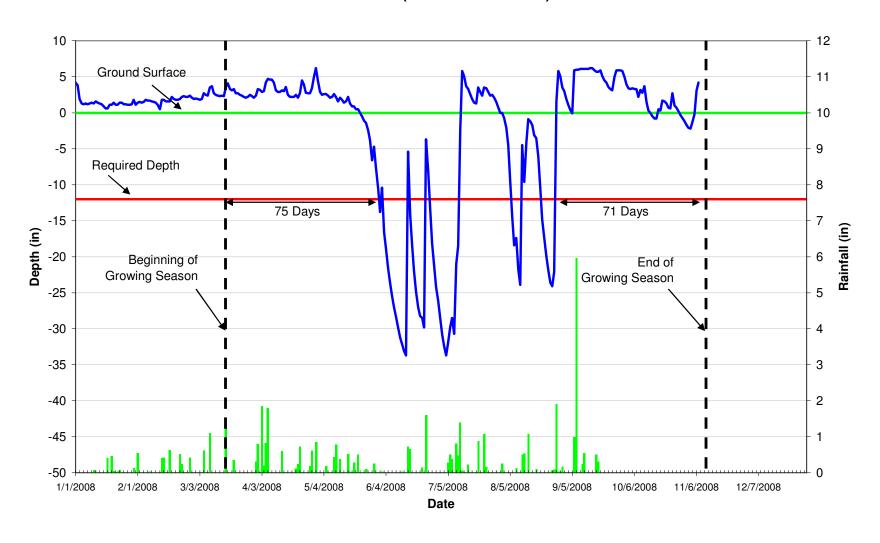

Туре		
silt/clay	20%	
sand	78%	
gravel	2%	
cobble	0%	
boulder	0%	

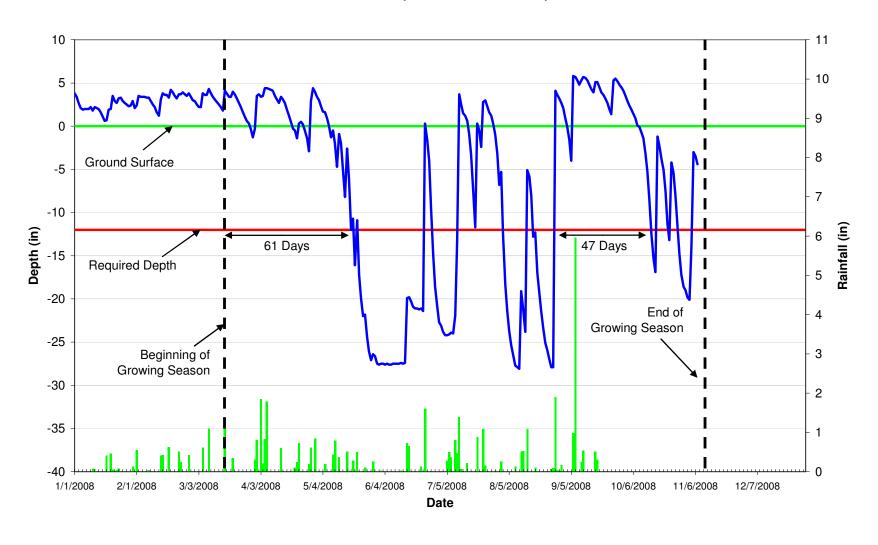
C.1 GAUGE DATA

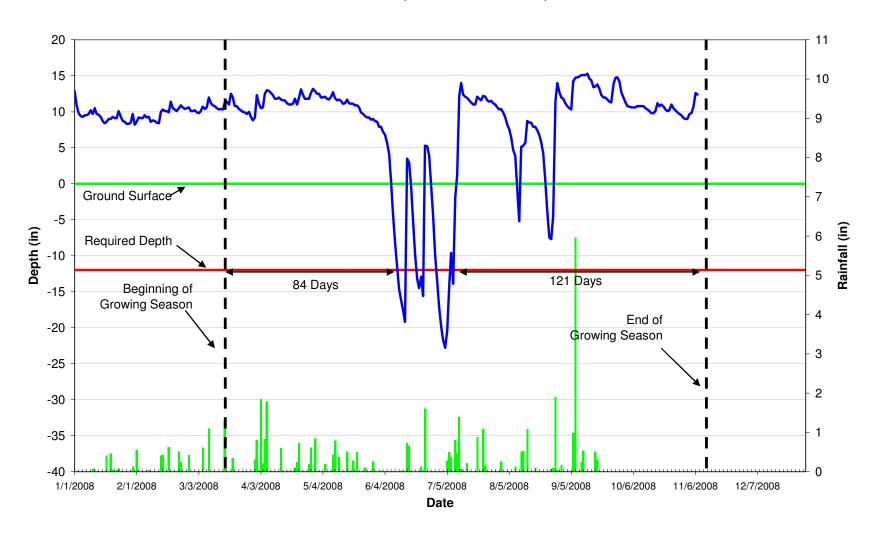

2008 Groundwater Data Well JR-1 (SN: 00000A282F9D)

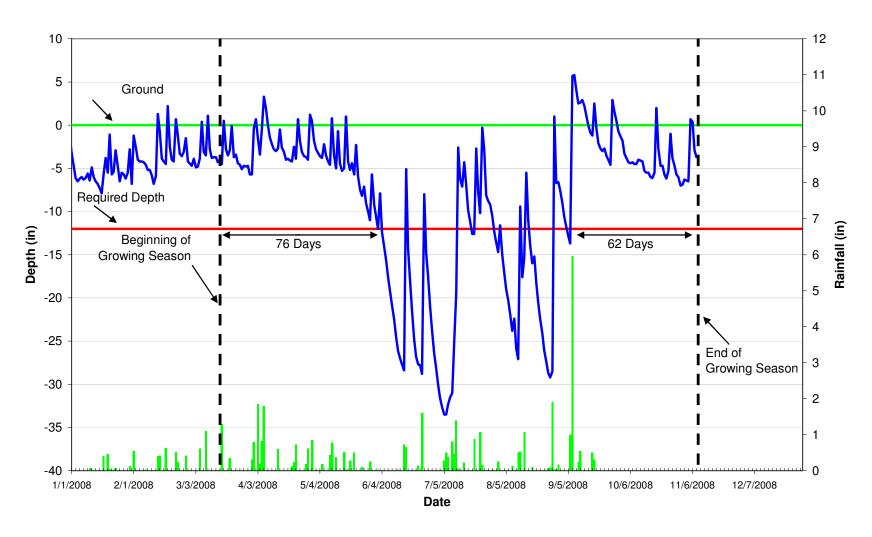

2008 Groundwater Data Well JR-2 (SN: 00000B6517D5)

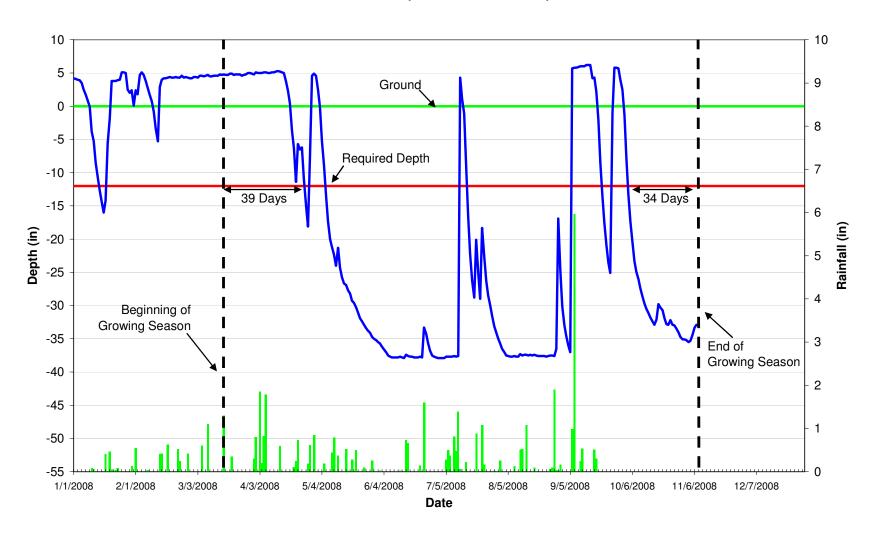

2008 Groundwater Data Well JR-3 (SN: 00000A287272)

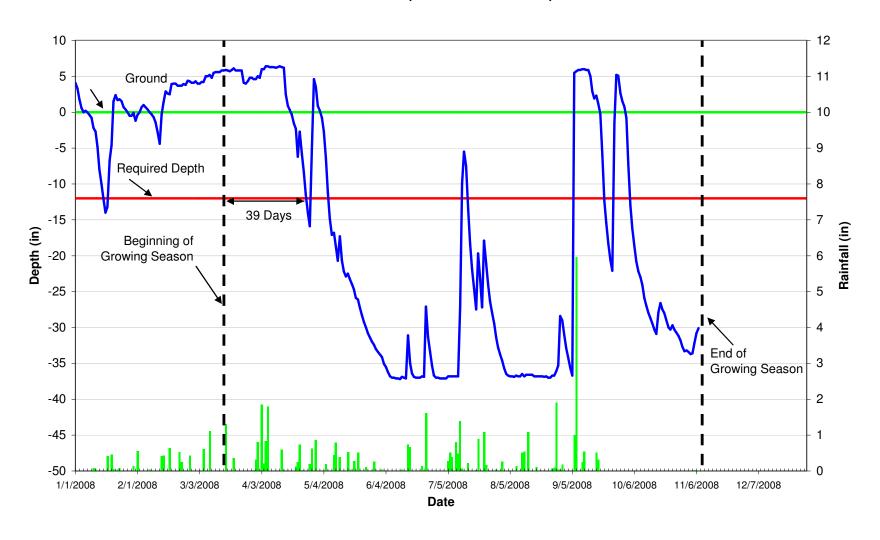

2008 Groundwater Data Well JR-4 (SN: 00000A28813D)

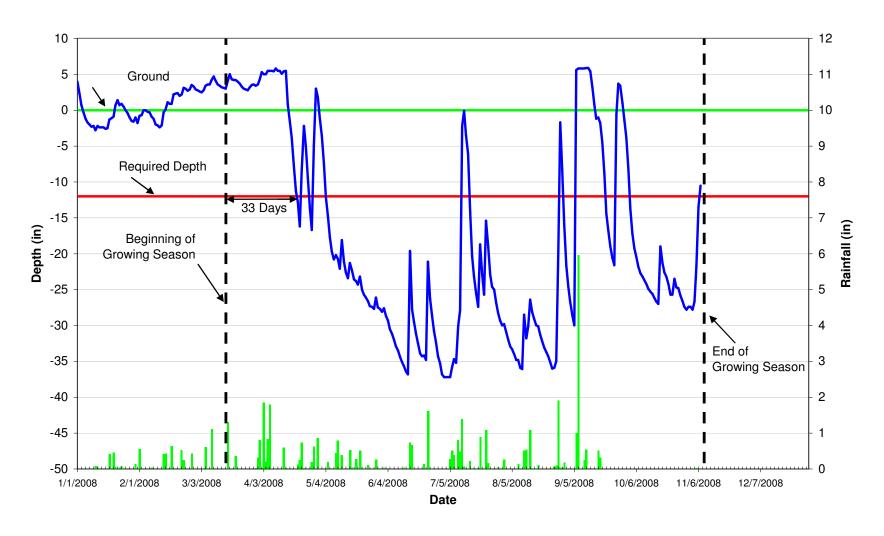

2008 Groundwater Data Well JR-5 (SN: 00000A278DE1)

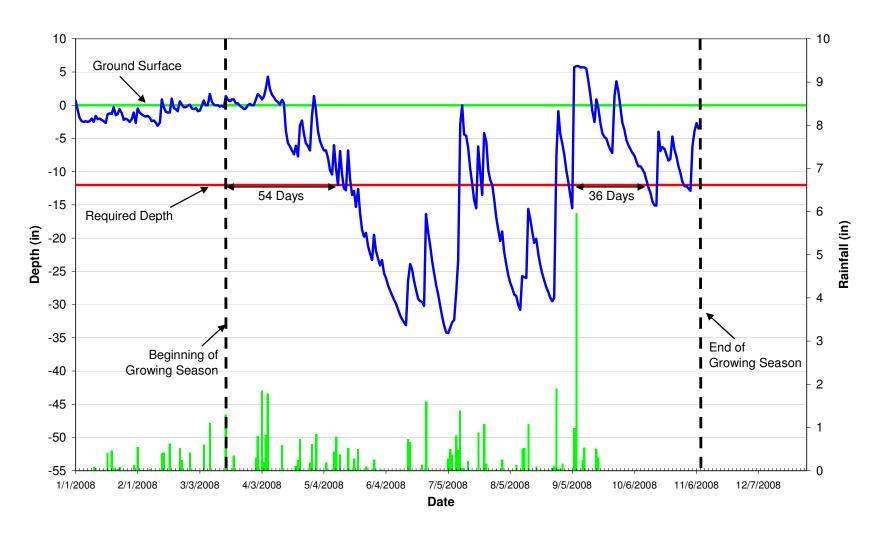

2008 Groundwater Data Well JR-6 (SN: 00000A28A0D9)

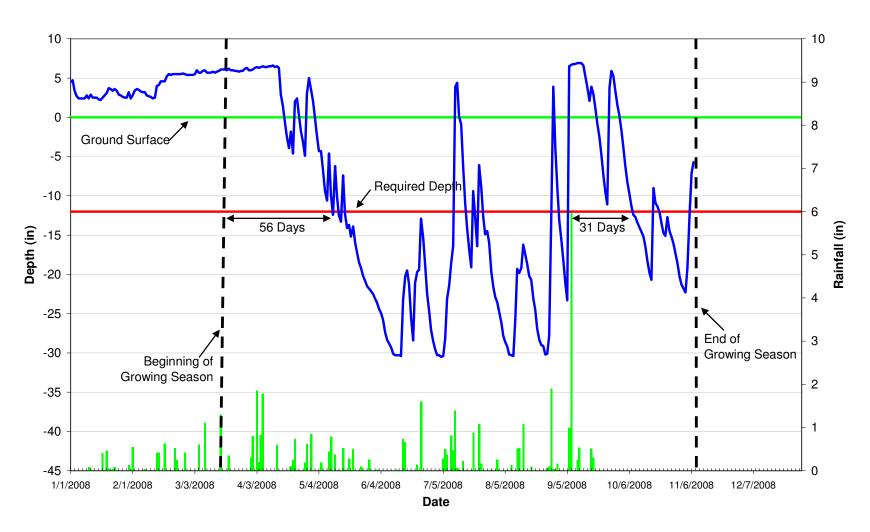

2008 Groundwater Data Well JR-7 (SN: 00000AB36E51)

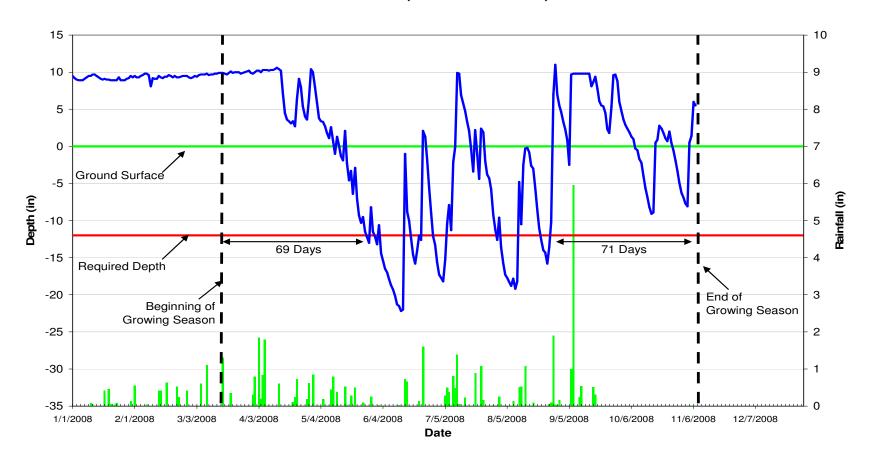

2008 Groundwater Data Well JR-8 (SN: 00000AB372F9)

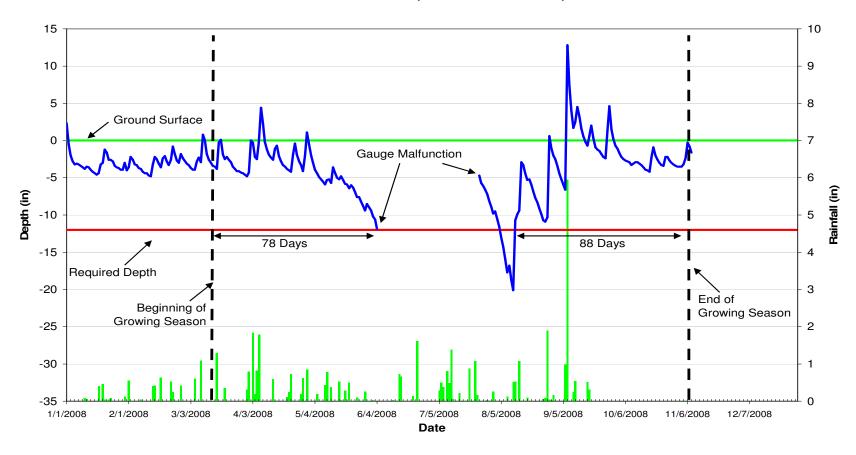

2008 Groundwater Data Well JR-9 (SN: 00000AB35FB9)

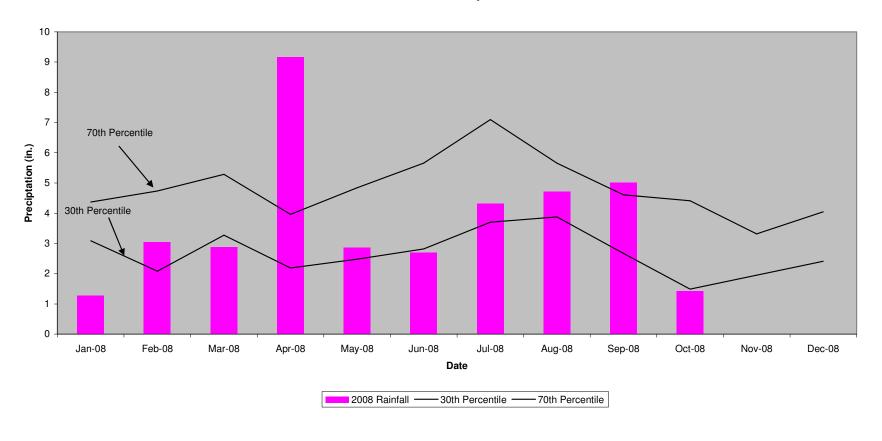

2008 Groundwater Data Well JR-10 (SN: 00000A287F34)


2008 Groundwater Data Well JR-11 (SN: 00000A289B07)

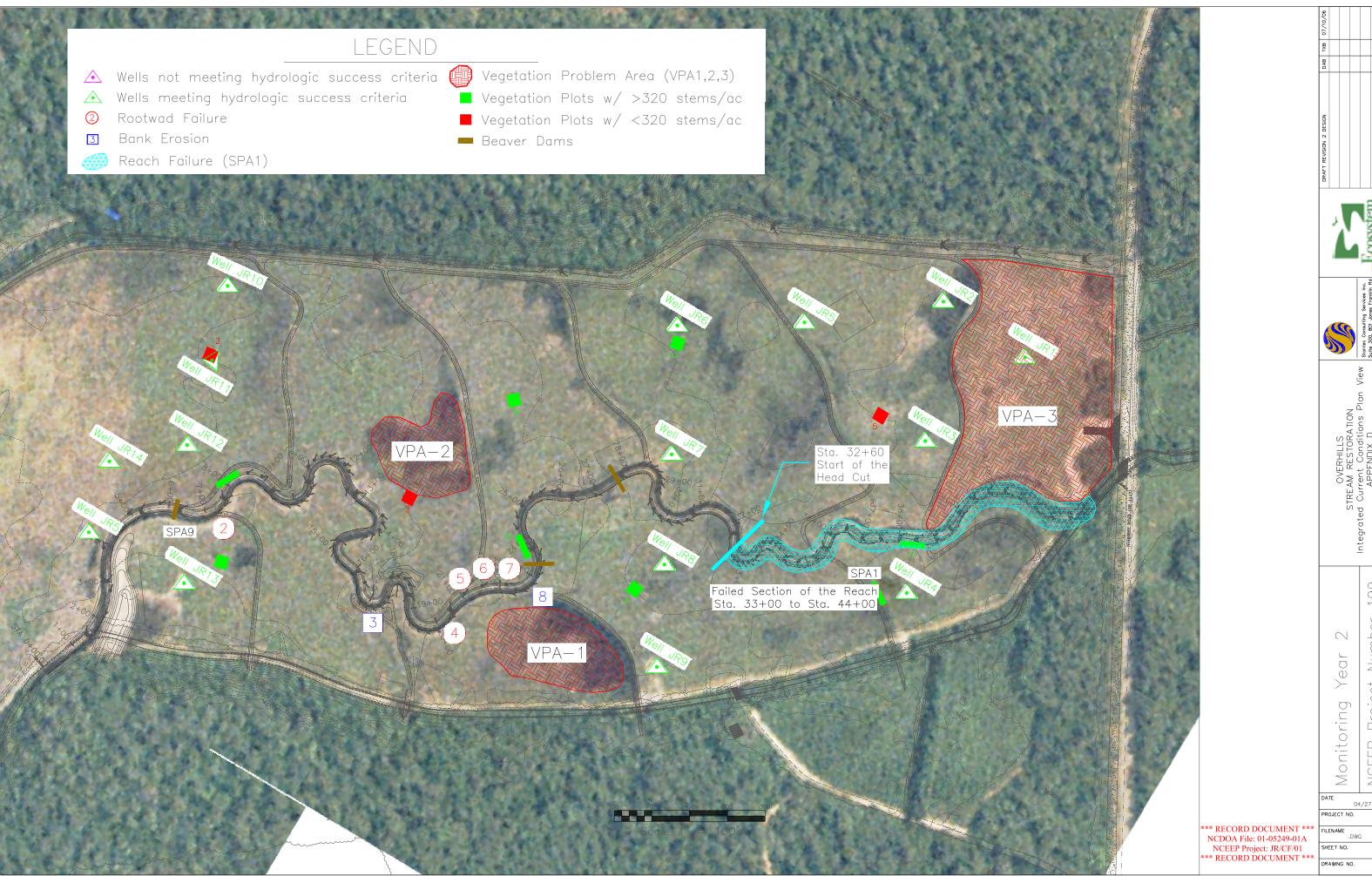

2008 Groundwater Data Well JR-12 (SN: 00000AB3660B)


2008 Groundwater Data Well JR-13 (SN: 00000A28BC50)


2008 Groundwater Data Well JR-14 (SN: 00000A285751)


2008 Groundwater Data Well JR-15 (SN: 00000A288465)

2008 Groundwater Data Reference Well 1 (SN: 00000EBD001B)


Overhills Stream 30-70 Percentile Graph Harnett County, NC

Appendix D. Integrated Current Condition Plan View

See following page for Integrated Current Condition Plan View Map.

This page intentionally left blank.

